Skip to main content
Log in

Model of Lipid Diffusion in Cytoplasmic Membranes

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An analytical model was developed to describe lateral lipid diffusion in heterogeneous native cytoplasmic membranes. The Fourier transform was used to solve the diffusion equation for a coordinate distribution function of lipids in a periodically inhomogeneous membrane, in which the diffusion coefficient is described by a harmonic function of coordinates. Advection and diffusion were shown to occur in the membrane. According to the model, various types of lipid diffusion observed experimentally in the membrane result from structural transitions arising in periodically arranged, fixed protein–lipid domains associated with the spectrin–actin–ankyrin network. If the domains are the same, superdiffusion and subdiffusion can be observed in experiments; i.e., the mean square displacement of lipids depends nonlinearly on time and their average displacement is zero. Drift during advection was lower than the chaotic Brownian displacement of lipids, advection was not observed in the experiment. When membrane proteins associated with the spectrin–actin–ankyrin network do not all undergo similar conformational changes upon ligand binding, two periodic sublattices of inhomogeneities arise in the membrane from fixed protein–lipid domains around membrane proteins associated with the cytoskeleton and are nested in one another. In this case, hop diffusion can be found in experiments; i.e., periods of nonlinear diffusion of molecules are replaced by periods of advection–diffusion, in which the average displacement of molecules is nonzero. Advection is local in nature and occurs near individual protein–lipid domains. Criteria for hop diffusion to be experimentally observed in a periodically inhomogeneous membrane were obtained analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. K. Suzuki, K. Ritchie, E. Kajikawa, et al., Biophys. J. 88 (5), 3659 (2005).

    Article  ADS  Google Scholar 

  2. R. G. Parton and M. A. del Pozo, Nat. Rev. Mol. Cell Biol. 14 (2), 98 (2013).

    Article  Google Scholar 

  3. P. G. Saffman and M. Delbruck, Proc. Natl. Acad. Sci. U. S. A. 72, 3111 (1975).

    Article  ADS  Google Scholar 

  4. E. P. Petrov and P. Schwille, Biophys. J. 94 (5), 45 (2008).

    Article  Google Scholar 

  5. P. V. Mokrushnikov, L. E. Panin, V. E. Panin, et al., Structural Transitions in Erythrocyte Membranes (Experimental and Theoretical Models) (Novosib. Gos. Arkhit. Stroit. Univ., Novosibirsk, 2019) [in Russian].

    Google Scholar 

  6. T. Fujiwara, K. Ritchie, H. Murakoshi, et al., J. Cell Biol. 157 (6), 1071 (2002).

    Article  Google Scholar 

  7. T. K. Fujiwara, K. Iwasawa, Z. Kalay, et al., Mol. Biol. Cell 27 (7), 1101 (2016).

    Article  Google Scholar 

  8. P. F. Lenne, L. Wawrezinieck, F. Conchonaud, et al., EMBO J. 25 (14), 3245 (2006) [in Russian].

    Article  Google Scholar 

  9. A. Honigmann, S. Sadeghi, J. Keller, et al., Elife 3, e01671 (2014).

    Article  Google Scholar 

  10. M. Renner, Y. Domanov, F. Sandrin, et al., PLoS One 6 (9), e25731 (2011).

    Article  ADS  Google Scholar 

  11. A. Einstein, Annal. Phys. 322(8), 549 (1905).

    Article  ADS  Google Scholar 

  12. K. Ayscough, Methods Enzymol. 298, 18 (1998).

    Article  Google Scholar 

  13. G. I. Mashanov, T. A. Nenasheva, A. Mashanova, et al., Faraday Discuss. 232, 358 (2021).

    Article  ADS  Google Scholar 

  14. M. N. Costa, K. Radhakrishnan, and J. S. Edwards, J. Biotechnol. 151 (3), 261 (2011).

    Article  Google Scholar 

  15. Y. A. Domanov, S. Aimon, G. E. S. Toombes, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (31), 12605 (2011).

    Article  ADS  Google Scholar 

  16. O. A. Dvoretskaya and P. S. Kondratenko, J. Exp. Theor. Phys. 116, 698 (2013).

    Article  ADS  Google Scholar 

  17. P. S. Kondratenko and A. L. Matveev, J. Exp. Theor. Phys. 157 (4), 703 (2020).

    Google Scholar 

  18. G. J. Wang and N. G. Hadjiconstantinou, Langmure 34 (23), 6976 (2018).

    Article  Google Scholar 

  19. V. Andryushchenko and V. Rudyak, Defect and Diffus. Forum, Nos. 312–315, 417 (2011).

  20. V. A. Andryushchenko and V. Ya. Rudyak, Rep. Acad. Sci. Higher School Russ. Fed. 2 (15), 6 (2010).

    Google Scholar 

  21. V. Ya. Rudyak, Statistical Aerohydromechanics of Homogeneous and Heterogeneous Media. V. 2. Hydromechanics (Novosib. Gos. Arkhit. Stroit. Univ., Novosibirsk, 2005) [in Russian].

  22. S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).

    Article  ADS  Google Scholar 

  23. G. L. Nicolson, Biochim. Biophys. Acta 457 (1), 57 (1976).

    Article  Google Scholar 

  24. P. V. Mokrushnikov, in Lipid Bilayers: Properties, Behavior and Interactions, Ed. by M. Ashrafuzzaman (Nova Sci. Publ., New York, 2019), pp. 43–91.

    Google Scholar 

  25. J. Morel, S. Claverol, S. Mongrand, et al., Mol. Cell Proteomics 5 (8), 1396 (2006).

    Article  Google Scholar 

  26. S.-C. Liu, L. H. Derick, and J. Palek, J. Cell Biol. 104, 527 (1987).

    Article  Google Scholar 

  27. L. E. Panin, P. V. Mokrushnikov, V. G. Kunitsyn, and B. N. Zaitsev, J. Phys. Chem. B 114, 9462 (2010).

    Article  Google Scholar 

  28. L. E. Panin, P. V. Mokrushnikov, V. G. Kunitsyn, and B. N. Zaitsev, J. Phys. Chem. B 115, 14969 (2011).

    Article  Google Scholar 

  29. V. Ya. Rudyak and A. A. Belkin, Dokl. Phys. 59, 604 (2014).

    Article  ADS  Google Scholar 

  30. V. Ya. Rudyak and A. A. Belkin, Nanosyst.: Phys., Chem., Math. 6 (3), 366 (2015).

    Google Scholar 

  31. V. Ya. Rudyak and A. A. Belkin, Nanosyst.: Phys., Chem., Math. 9 (3), 349 (2018).

    Google Scholar 

  32. L. E. Panin and P. V. Mokrushnikov, Vestn. Novosib. Gos. Pedagog. Univ. 5 (15), 101 (2013).

    Google Scholar 

  33. P. V. Mokrushnikov, A. N. Dudarev, T. A. Tkachenko, et al., Biochem. (Moscow), Suppl. Ser. 11 (1), 48 (2017).

  34. L. E. Panin, P. V. Mokrushnikov, V. G. Kunitsyn, et al., Phys. Mesomech. 14 (3–4), 167 (2011).

    Article  Google Scholar 

  35. P. V. Mokrushnikov, L. E. Panin, N. S. Doronin, et al., Biophysics (Moscow) 56 (6), 1074 (2011).

    Article  Google Scholar 

  36. P. V. Mokrushnikov, Biophysics 65 (1), 65 (2020).

    Article  Google Scholar 

  37. A. I. Kozelskaya, A. V. Panin, I. A. Khlusov, et al., Toxicol. In Vitro 37, 34 (2016).

    Article  Google Scholar 

  38. P. V. Mokrushnikov, J. Physics: Conf. Ser., No. 012161 (2019).

  39. P. V. Mokrushnikov, E. V. Lezhnev, and V. Ya. Rudyak, AIP Conf. Proc. 2351, 040054 (2021).

    Article  Google Scholar 

  40. P. V. Mokrushnikov, V. Ya. Rudyak, and E. V. Lezhnev, Nanosyst.: Phys., Chem., Math. 12 (1), 22 (2021).

    Google Scholar 

  41. L. E. Panin and P. V. Mokrushnikov, Biophysics (Moscow) 59 (1), 127 (2014).

    Google Scholar 

  42. P. V. Mokrushnikov, L. E. Panin, and B. N. Zaitsev, Gen. Physiol. Biophys. 34 (3), 311 (2015).

    Google Scholar 

  43. P. V. Mokrushnikov, Biophysics 62 (2), 256 (2017).

    Article  Google Scholar 

  44. L. E. Panin, P. V. Mokrushnikov, R. A. Knyazev, et al., Ateroskleroz 6, 12 (2012).

    Google Scholar 

  45. V. G. Kunitsyn, P. V. Mokrushnikov, and L. E. Panin, Byull. Sib. Otd. Ross. Akad. Med. Nauk 5 (127), 28 (2007).

    Google Scholar 

  46. P. V. Mokrushnikov, Byull. Sib. Otd. Ross. Akad. Med. Nauk 1 (147), 38 (2010).

    Google Scholar 

  47. O. N. Poteryaeva, G. S. Russkikh, P. V. Mokrushnikov, et al., Vestn. Ural. Med. Akad. Nauk 48 (2), 149 (2014).

    Google Scholar 

  48. P. V. Mokrushnikov, L. P. Osipova, T. V. Goltsova, and A. A. Rozumenko, Yakutsk. Med. Zh. 54 (2), 15 (2016).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-575) and the Russian Foundation for Basic Research (project no. 20-01-00041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Mokrushnikov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushnikov, P.V., Rudyak, V.Y. Model of Lipid Diffusion in Cytoplasmic Membranes. BIOPHYSICS 68, 31–43 (2023). https://doi.org/10.1134/S0006350923010128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923010128

Keywords:

Navigation