Skip to main content
Log in

Procyanidin B3 as a Potential Inhibitor of Human Septin 9

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Septin cytoskeletal proteins are involved in many cellular processes; changes in their expression are a marker of oncological diseases. In this regard, septins can be a potential target for the treatment of cancer cells. To search for new small molecules that affect the structural organization of septin filaments, a virtual screening of the PubChem database compound library was performed and a substance with the highest affinity, the flavonoid procyanidin B3, was selected among all the compounds. Molecular modeling showed that procyanidin B3 interacts with the septin monomer SEPT9 in the region of the G1 and G4 motifs, which are important for GTP binding, and prevents dimerization of septin monomers. Therefore, procyanidin B3 can be considered as a promising compound for affecting the structure of septin filaments in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. D. Leipe, Y. I. Wolf, E. V. Koonin, and L. Aravind, J. Mol. Biol. 317 (1), 41 (2002).

    Article  Google Scholar 

  2. L. Hartwell, Exp. Cell Res. 69 (2), 265 (1971).

    Article  Google Scholar 

  3. B. Byers and L. Goetsch, J. Cell Biol. 69 (3), 717 (1976).

    Article  Google Scholar 

  4. C. Martinez, M. A. Sanjuan, J. A. Dent, et al., Biochem. J. 382 (3), 783 (2004).

    Article  Google Scholar 

  5. E. T. Spiliotis, J. Cell Sci. 131 (1), 207555 (2018).

    Article  Google Scholar 

  6. F. Calvo, R. Ranftl, S. Hooper, et al., Cell Reports 13 (12), 2699 (2015).

    Article  Google Scholar 

  7. N. Zhang, L. Liu, N. Fan, et al., Oncotarget 7 (38), 61587 (2016).

    Article  Google Scholar 

  8. M. E. Gonzalez, E. A. Peterson, L. M. Privette, et al., Cancer Res. 67 (18), 8554 (2007).

    Article  Google Scholar 

  9. D. Connolly, I. Abdesselam, P. Verdier-Pinard, and C. Montagna. Biol. Chem. 392 (8–9), 725 (2011).

  10. R. K. Singh, K. K. Kim, N. Khazan, et al., BioRxiv 2020, 954529 (2020).

    Google Scholar 

  11. E. A. Marcus, E. Tokhtaeva, S. Turdikulova, et al., Biochem. J. 473 (12), 1703 (2016).

    Article  Google Scholar 

  12. A. A. Rodal, L. Kozubowski, B. L. Goode, et al., Mol. Biol. Cell 16 (1), 372 (2005).

    Article  Google Scholar 

  13. M. Kinoshita, C. M. Field, M. L. Coughlin, et al., Dev. Cell 3 (6), 791 (2002).

    Article  Google Scholar 

  14. M. Sirajuddin, M. Farkasovsky, F. Hauer, et al., Nature 449 (7160), 311 (2007).

    Article  ADS  Google Scholar 

  15. M. S. Kim, C. D. Froese, M. P. Estey, and W. S. Trimble, J. Cell Biol. 195 (5), 815 (2011).

    Article  Google Scholar 

  16. K.-I. Nagata and M. Inagaki, Oncogene 24 (1), 65 (2004).

    Article  Google Scholar 

  17. Y. Zeng, Y. Cao, L. Liu, et al., Cell Death & Disease 10, 720 (2019).

    Article  Google Scholar 

  18. C. Pous, L. Klipfel, and A. Baillet, Front. Cell Devel. Biol. 4, 126 (2016).

    Google Scholar 

  19. M. Desouza, P. W. Gunning, and J. R. Stehn, BioArchitecture 2 (3), 75 (2012).

    Article  Google Scholar 

  20. M. Sirajuddin, M. Farkasovsky, E. Zent, and A. Wittinghofer, Proc. Natl. Acad. Sci. U. S. A. 106 (39), 16592 (2009).

    Article  ADS  Google Scholar 

  21. E. Zent and A. Wittinghofer, Biol. Chem. 395 (2), 169 (2014).

    Article  Google Scholar 

  22. A. M. Vrabioiu, S. A. Gerber, S. P. Gygi, et al., J. Biol. Chem. 279 (4), 3111 (2004).

    Article  Google Scholar 

  23. M. Farkasovsky, P. Herter, B. Voss, and A. Wittinghofer, Biol. Chem. 386 (7) (2005).

  24. M. Mendoza, A. A. Hyman, and M. Glotzer, Curr. Biol. 12 (21), 1858 (2002).

    Article  Google Scholar 

  25. D. Vardi-Oknin, M. Golan, and N. J. Mabjeesh, PLoS One 8 (8), e73179 (2013).

    Article  ADS  Google Scholar 

  26. W. Blum, T. Henzi, L. Pecze, et al., Oncotarget 10 (65), 6944 (2019).

    Article  Google Scholar 

  27. D. Angelis, E. P. Karasmanis, X. Bai, and E. T. Spiliotis, PLoS One 9 (5), e96390 (2014).

    Article  ADS  Google Scholar 

  28. K. K. Kim, R. K. Singh, N. Khazan, et al., Sci. Rep. 10 (1) (2020).

  29. L. R. Heasley, G. Garcia, and M. A. Mcmurray, Eukaryotic Cell 13 (11), 1411 (2014).

    Article  Google Scholar 

  30. G. M. Sastry, M. Adzhigirey, T. Day, et al., J. Computer-Aided Mol. Design 27 (3), 221 (2013).

    Google Scholar 

  31. S. Kim, J. Chen, T. Cheng, et al., Nucleic Acids Res. 49 (D1), D1388 (2021).

    Article  Google Scholar 

  32. S. L. Dixon, A. M. Smondyrev, and S. N. Rao, Chem. Biol. Drug Design 67 (5), 370 (2006).

    Article  Google Scholar 

  33. R. A. Friesner, R. B. Murphy, M. P. Repasky, et al., J. Med. Chem. 49 (21), 6177 (2006).

    Article  Google Scholar 

  34. D. A. Case, T. E. Cheatham 3rd, T. Darden, et al., J. Comput. Chem. 26 (16), 1668 (2005).

    Article  Google Scholar 

  35. K. J. Bowers, D. E. Chow, H. Xu, et al., in Proc. 2006 ACM/IEEE Conf. on Supercomputing (SC'06) (2006), p. 84.

  36. D. A. Filimonov, A. A. Lagunin, T. A. Gloriozova, et al., Chem. Heterocyclic Compounds 50 (3), 444 (2014).

    Article  Google Scholar 

  37. O. Trott and A. J. Olson, J. Comput. Chem. 31, 455 (2009).

    Google Scholar 

  38. I. A. Guedes, A. M. S. Barreto, D. Marinho, et al., Sci. Rep. 11, 3198 (2021).

    Article  ADS  Google Scholar 

  39. A. Grosdidier, V. Zoete, and O. Michielin, Nucl. Acids Res. 39, W270 (2011).

    Article  Google Scholar 

  40. Y. Liu, M. Grimm, W. Dai, et al., Acta Pharmacol. Sinica 41 (1), 138 (2019).

    Article  Google Scholar 

  41. Y. Lee, Toxicol. Res. 33 (4), 273 (2017).

    Article  Google Scholar 

  42. X. Ye, R. L. Krohn, W. Liu, et al., Mol. Cell Biochem. 196 (1–2), 99 (1999).

  43. U. Lewandowska, K. Szewczyk, K. Owczarek, et al., Nutrit. Cancer 65 (8), 1219 (2013).

    Article  Google Scholar 

  44. K.-C. Choi, S. Park, B. J. Lim, et al., Biochem. J. 433 (1), 235 (2011).

    Article  Google Scholar 

  45. A. Shilpi, S. Parbin, D. Sengupta, et al., Chem. -Biol. Interact. 233, 122 (2015).

    Article  Google Scholar 

  46. G. G. Mackenzie, A. M. Adamo, N. P. Decker, and P. I. Oteizaet, Biochem. Pharmacol. 75 (7), 1461 (2008).

    Article  Google Scholar 

  47. J. F. Burrows, S. Chanduloy, M. A. McIlhatton, et al., J. Pathol. 201 (4), 581 (2003).

    Article  Google Scholar 

  48. V. V. Voevodin, A. S. Antonov, D. A. Nikitenko, et al., Supercomput. Front. Innovations 6 (2), 4 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out using the equipment of the shared research facilities of HPC computing resources at Moscow State University [48].

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-34-90178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Sokolova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

Abbreviations: GEF, guanine nucleotide exchange factor; RMSD, root-mean-square deviation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhrusheva, A.V., Kudryavtsev, A.V., Sokolova, O.S. et al. Procyanidin B3 as a Potential Inhibitor of Human Septin 9. BIOPHYSICS 66, 887–896 (2021). https://doi.org/10.1134/S000635092106018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092106018X

Navigation