Skip to main content
Log in

The Singlet–Triplet Fission of Carotenoid Excitation in Light-Harvesting Complexes from Thermochromatium tepidum

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Illumination of purple phototrophic bacteria in the carotenoid absorption band of light harvesting complexes often leads to low energy efficiency of absorbed light. This is due to singlet–triplet fission of carotenoid excitation. In the present study, the nature of this process was explored with a phototrophic bacterium Thermochromatium tepidum as an example. It was demonstrated by time-resolved EPR spectroscopy and magnetic field modulation of the fluorescence yield that the concept of intramolecular excitation fission that was developed in several publications was not confirmed experimentally. Evidence of the intermolecular character of excitation fission that involves two carotenoid molecules of the light-harvesting pigment–protein complexes, LH1-RC and LH2, has been obtained. The advantages of intermolecular excitation fission for application in photovoltaic solar energy converters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. B. Ke, Photosynthesis. Photobiochemistry and Photobiophysics (Kluwer, Dordrecht, 2001).

    Google Scholar 

  2. H. Hashimoto, Y. Sugai, C. Uragami, et al., J. Photochem. Photobiol. C 25, 46 (2015).

    Article  Google Scholar 

  3. R. J. Cogdell, A. T. Gardiner, A. W. Roszak, et al., Photosynth. Res. 81, 207 (2004).

    Article  Google Scholar 

  4. R. J. Cogdell and H. A. Frank, Biochim. Biophys. Acta 895, 63 (1987).

    Article  Google Scholar 

  5. A. A. Krasnovsky, Biofizika 22 (5), 927 (1977).

    Google Scholar 

  6. A. A. Krasnovsky, Photochem. Photobiol. 29, 29 (1979).

    Article  Google Scholar 

  7. H. A. Frank and R. J. Cogdell, in Carotenoids in Photosynthesis (Springer, 1993), Chap. 8, pp. 252–326.

    Google Scholar 

  8. T. Polivka and V. Sundstrom, Chem. Rev. 104, 2021 (2004).

    Article  Google Scholar 

  9. D. Niedzwiedzki, J. F. Koscielecki, H. Cong, et al., J. Phys. Chem B. 111, 5984 (2007).

    Article  Google Scholar 

  10. C. C. Gradinaru, J. T. M. Kennis, E. Papagiannakis, et al., Proc. Natl. Acad. Sci. U. S. A. 98 (5), 2364 (2001).

    Article  ADS  Google Scholar 

  11. E. Papagiannakis, J. T. M. Kennis, I. H. M. van Stokkum, et al., Proc. Natl. Acad Sci. U. S. A. 99, 6017 (2002).

    Article  ADS  Google Scholar 

  12. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010).

    Article  Google Scholar 

  13. M. B. Smith and J. Michl, Annu. Rev. Phys. Chem. 64, 361 (2013).

    Article  ADS  Google Scholar 

  14. M. C. Hanna and A. J. Nozik, J. Appl. Phys. 100 (7), 074510-1 (2006).

    Article  ADS  Google Scholar 

  15. I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, et al., Dokl. Biochem. Biophys. 441, 290 (2011).

    Article  Google Scholar 

  16. J. Yu, L.-M. Fu, L.-J. Yu, et al., J. Am. Chem. Soc. 139, 15984 (2017).

    Article  Google Scholar 

  17. I. B. Klenina, A. A. Gryaznov, Z. K. Makhneva, et al., Dokl. Biochem. Biophys. 485 (2), 135 (2019).

    Article  Google Scholar 

  18. I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, et al., Biophysics (Moscow) 58 (1), 43 (2013).

    Article  Google Scholar 

  19. A. Ashikhmin, Z. Makhneva, and A. Moskalenko, Photosynth. Res. 119, 291(2014).

    Article  Google Scholar 

  20. A. Angerhofer, F. Bornhauser, A. Gall, et al., Chem. Phys. 194, 259 (1995).

    Article  Google Scholar 

  21. K. Bhattacharyya, D. Dey, and A. Datta, J. Phys. Chem. C 123, 4749 (2019)

    Article  Google Scholar 

  22. M. Tuan Trinh, Yu Zhong, Qishui Chen, et al., J. Phys. Chem. C 119, 1312 (2015).

    Article  Google Scholar 

  23. G. McDermott, S. M. Prince, A. A. Freer, et al., Nature 374, 517 (1995).

    Article  ADS  Google Scholar 

  24. V. Cherezov, J. Clogston, M. Z. Papiz, et al., J. Mol. Biol. 357, 1605 (2006).

    Article  Google Scholar 

  25. P. Tavan and K. Shulten, Phys. Rev. B 36, 4337 (1987).

    Article  ADS  Google Scholar 

  26. I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, et al., Biochemistry (Moscow) 79 (3), 235 (2014)

    Article  Google Scholar 

  27. R. E. Merrifield, Pure Appl. Chem. 27 (3), 481 (1971).

    Article  Google Scholar 

  28. C. E. Swenberg and N. E. Geacintov, in Organic Molecular Photophysics, Ed. by J. B. Birks (Wiley, London, 1973), pp. 489–564.

    Google Scholar 

  29. D. M. Niedzwiedzki, M. Kobayashi, and R. E. Blankenship, Photosynth. Res. 107, 177 (2011).

    Article  Google Scholar 

  30. H. Rademaker, A. J. Hoff, R. van Grondelle, et al., Biochim. Biophys. Acta 592, 240 (1980).

    Article  Google Scholar 

Download references

Funding

The work on the isolation of pigments from Th. tepidum and their analysis (see “Materials and methods”) was carried out with partial financial support from The Russian Foundation for Basic Research, project no. 17-04-00929_a; the other results were obtained within the framework of the State Assignment, no. AAAAA-A17-117030110140-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gryaznov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This paper does not describe any studies using humans and animals as objects of the study.

Additional information

Translated by E. Puchkov

Abbreviations: BChl, bacteriochlorophyll; Car, carotenoid; EPR, electron paramagnetic resonance; SZF, splitting in zero field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryaznov, A.A., Klenina, I.B., Makhneva, Z.K. et al. The Singlet–Triplet Fission of Carotenoid Excitation in Light-Harvesting Complexes from Thermochromatium tepidum. BIOPHYSICS 64, 847–852 (2019). https://doi.org/10.1134/S0006350919060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919060083

Keywords:

Navigation