Skip to main content
Log in

Estimation of the Microcirculatory Response to the Effect of Cold Helium Plasma

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—This study was aimed at estimating the microcirculatory response to local application of cold helium plasma. Experiments were performed with 20 healthy male Wistar rats, which were divided into two groups of 10 rats each. Rats of one (control) group (n = 10) were tested once for microcirculatory indices. Rats of the other (test) group (n = 10) were treated daily with cold helium plasma for 5 days. Plasma was applied to the surface of the skin on the back; the duration of the exposure was 1 min. Cold helium plasma was generated with a special device, which was designed and constructed at the Institute of Applied Physics (Nizhny Novgorod, Russia) and utilized microwave-induced ionization of gas flow. Microcirculation was tested by laser Doppler flowmetry, using an LAKK-M device (Moscow, Russia). A short course (five daily procedures) of cold helium plasma treatment moderately decreased the intensity of blood flow through small vessels. The effect was associated with nitric oxide-dependent vasodilation and optimization of the role that bypass mechanisms play in microcirculation. Cold helium plasma treatment was assumed to exert a proadaptive hemodynamic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. N. Aleinik, Laser Medicine: A Textbook (Tomsk Ped. Univ., Tomsk, 2011) [in Russian].

  2. M. Y. Alkawareek, S. P. Gorman, W. G. Graham, and B. F. Gilmore, Int. J. Antimicrob. Agents 43, 154 (2014).

    Article  Google Scholar 

  3. D. Dobrynin, D. Fridman, G. Friedman, and A. Fridman, New J. Phys. 11, 1 (2009).

    Article  Google Scholar 

  4. M. G. Kong, G. Kroesen, G. Morfill, et al., New J. Phys. 11, 115012 (2009).

    Article  ADS  Google Scholar 

  5. M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009).

    Article  ADS  Google Scholar 

  6. B. B. Baldanov, Ts. R. Ranzhurov, Ch. N. Norboev, et al., Vestn. VSGUTU, No. 4, 56 (2015).

    Google Scholar 

  7. A. I. Kuropatkin and V. V. Sidorov, Functional Diagnosis of Microcirculatory Tissue Systems: Fluctuations, Information, Nonlinearity. A Manual for Physicians (LIBROKOM, Moscow, 2013) [in Russian].

  8. N. H. Alshraiedeh, S. Higginbotham, P. B. Flynn, et al., Int. J. Antimicrob. Agents 47, 446 (2016).

    Article  Google Scholar 

  9. K. Duske, K. Wegner, M. Donnert, et al., Plasma Process Polym. 12, 1050 (2015).

    Article  Google Scholar 

  10. S. A. Ermolaeva, A. F. Varfolomeev, M. Yu. Chernukha, et al., J. Med. Microbiol. 60, 75 (2011).

    Article  Google Scholar 

  11. P. B. Flynn, A. Busetti, E. Wielogorska, et al., Sci. Rep. 6, 26320 (2016).

    Article  ADS  Google Scholar 

  12. K. Lotfy, Austin Biochem. 1 (1), 1001 (2016).

    Google Scholar 

  13. V. Scholtz, et al., Biotechnol. Adv. 33 (6), 1108 (2015).

    Article  Google Scholar 

  14. D. G. Lapitan et al., Med. Fiz., No. 1, 61 (2012).

  15. A. K. Martusevich, S. P. Peretyagin, and A. F. Vanin, Med. Fiz., No. 4, 80 (2012).

  16. A. K. Martusevich, A. G. Solov’eva, D. A. Yanin, et al., Vestn. Nov. Med. Tekhnol. 24 (3), 163 (2017).

    Google Scholar 

  17. E. Stoffels, Y. Sakiyama, D.B. Graves, IEEE Trans. Plasma Sci. 36, 1441 (2008).

    Article  ADS  Google Scholar 

  18. C. Wiegand, S. Fink, O. Beier, et al., Skin Pharmacol. Physiol. 29, 257 (2016).

    Article  Google Scholar 

  19. S.-M. Kim and J.-I. Kim, J. Microbiol. 44 (4), 466 (2006).

    Google Scholar 

  20. T. Von Woedtke, S. Reuter, K. Masur, and K. D. Weltmann, Phys. Rep. 530, 291 (2013).

    Article  ADS  Google Scholar 

  21. D. Butscher, D. Zimmermann, et al., Food Control 60b 636 (2016).

    Article  Google Scholar 

  22. K. Lee, K. Paek, W. T. Ju, and Y. Lee, J. Microbiol. 44 (2), 269 (2006).

    Google Scholar 

  23. F. Bajrovic, M. Cencur, M. Hozic, et al., Eur. J. Physiol. 439 (Suppl.), R158 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Martusevich.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martusevich, A.K., Krasnova, S.Y., Galka, A.G. et al. Estimation of the Microcirculatory Response to the Effect of Cold Helium Plasma. BIOPHYSICS 64, 610–613 (2019). https://doi.org/10.1134/S0006350919040110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919040110

Navigation