Skip to main content
Log in

The Temperature Sensitivity of the Processes of the Initial Stage of Microbial Decomposition of Woody Litter in Forest Soil

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Soil organic matter of forest ecosystems is characterized by high sensitivity to increased temperatures, which makes soil organic matter more vulnerable under the conditions of global warming. In this study, evaluation of the effects of different components of woody litter (leaves and small branches of aspen) on the dynamics of the activity and quantitative characteristics of microbial communities of soils under the conditions simulating climate warming was carried out. In our experiment we used samples of gray forest soil from the forest biocenosis of the Moscow area, which is typical of the European part of Russia. Incubation of soil samples to which crushed leaves and branches were added (0.5 wt %) was carried out at constant temperatures of 5, 15, and 25°C for 28 days. The dynamics of CO2 emission, organic carbon content, microbial biomass, as well as the number of the ribosomal genes of bacteria, archaea, and micromycetes, were evaluated. The optimal temperature for plant litter decomposition was 15°C; a decrease or increase in the temperature resulted in a decrease in the intensity of the litter decomposition process. Addition of plant residues in the temperature range of 5–15°C resulted in a significant increase in the temperature sensitivity of the soil-respiration process and the temperature coefficient increased from 1.75 to 3.44–3.54. In the temperature range of 15–25°C an inverse correlation was observed. At high temperatures addition of plant residues stimulated decomposition of soil organic matter. These results contribute to the understanding of the dynamics of soil carbon and can be used in predictive models of the processes of plant-litter decomposition and the dynamics of soil organic matter in forest biocenoses in Eurasia under the conditions of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. N. I. Bazilevich and L. E. Rodin, Organic Matter Dynamics and Biological Turnover of Nitrogen and Ash Elements in Basic Types of Global Vegetation (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  2. K. A. Lukomskaya, Microbiology with Fundamentals of Virology (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  3. D. G. Zvyagintsev, Soil and Microorganisms (Moscow State Univ., Moscow 1987) [in Russian].

    Google Scholar 

  4. J. S. Clein and J. P. Schimel, Soil Biol. Biochem. 27, 1231 (1995).

    Article  Google Scholar 

  5. F. L. Bunnell, D. E. N. Tait, P. W. Flanagan, and K. Van Cleve, Soil Biol. Biochem. 9, 33 (1977).

    Article  Google Scholar 

  6. L. A. Grishina, M. I. Koptsik, and M. I. Makarov, Transformation of Soil Organic Matter (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  7. L. S. Pesochina and T. P. Malygina, Micromorphological Features of Plant Debris Transformation under Different Hydrothermal Conditions (Soil. Sci. Inst., Moscow, 1989) [in Russian].

    Google Scholar 

  8. W. H. Schlesinger, Soil Organic Matter: A Source of Atmospheric CO 2 , Ed. by G. M. Woodwell (London, 1984).

    Google Scholar 

  9. N. N. Naplekova, Aerobic Decomposition of Cellulose by Microorganisms in Soils of Western Siberia (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  10. B. Berg and C. McClaugherty, Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (Springer-Verlag, Berlin, 2008).

    Book  Google Scholar 

  11. A. A. Rakhleeva, T. A. Semenova, B. R. Striganova, and V. A. Terekhova, Euras. Soil Sci. 44 (1), 38 (2011).

    Google Scholar 

  12. B. Berg and R. Laskowski, Adv. Ecol. Res. 38, 1 (2006).

    Google Scholar 

  13. E. A. Davidson, S. C. Hart, and M. K. Firestone, Ecology 73 (4), 1148 (1992).

    Article  Google Scholar 

  14. N. Fierer, J. M. Craine, K. McLauchghan, and J. P. Schimel, Ecology 86, 320 (2005).

    Article  Google Scholar 

  15. E. Matzner and W. Borken, Eur. J. Soil Sci. 59 (2), 274 (2008).

    Article  Google Scholar 

  16. M. Carlile, S. Watkinson, and G. Gooday, The Fungi, 2nd ed. (Academic, 2001).

    Google Scholar 

  17. C. Kramer and G. G. Leixner, Soil Biol. Biochem. 38, 3267 (2006).

    Article  Google Scholar 

  18. M. Pettersson and E. Bafiafith, FEMS Microbiol. Ecol. 45, 13 (2003)

    Article  Google Scholar 

  19. K. Carney, B. Hungate, B. Drake, and J. Megonigal, Proc. Natl. Acad. Sci. U. S. A. 104, 4990 (2007).

    Article  ADS  Google Scholar 

  20. K. K. Treseder, Ecol. Lett. 11 (10), 1111 (2008).

    Article  Google Scholar 

  21. P. M. Cox, R. A. Betts, C. D. Jones, et al., Nature 408, 184 (2000).

    Article  ADS  Google Scholar 

  22. G. A. Meehl, T. F. Stocker, W. D. Collins, et al., In Climate Change 2007: The Physical Science Basis, Ed. by S. Solomon, D. Qin, M. Manning, (Cambridge University Press, Cambridge, UK; 2007).

    Google Scholar 

  23. J. H. Christensen, B. Hewitson, A. Busuioc, et al., In Climate Change 2007: The Physical Science Basis. Ed. by S. Solomon, D. Qin, M. Manning, (Cambridge Univ. Press, Cambridge, UK, 2007).

    Google Scholar 

  24. T. R. Filley, T. W. Boutton, J. D. Liao, et al., J. Geophys. Res.–Biogeosci. 113, G03009 (2008).

    ADS  Google Scholar 

  25. M. U. F. Kirschbaum, Soil Biol. Biochem. 38 (9), 2510 (2006).

    Article  Google Scholar 

  26. I. P. Hartley and P. Ineson, Soil Biol. Biochem. 40 (7), 1567 (2008).

    Article  Google Scholar 

  27. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, et al., Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  28. A. V. Smagin, N. B. Sadovnikova, M. V. Smagina, et al., Modeling the Dynamics of Soil Organic Matter (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  29. L. Rustad, T. G. Huntington, and R. D. Boone, Biogeochemistry 48 (1), 1 (2000).

    Article  Google Scholar 

  30. S. Manzoni, S. M. Schaeffer, G. Katul, et al., Soil Biol. Biochem. 73, 69 (2014)

    Article  Google Scholar 

  31. E. E. Schulte, C. Kaufmann, and B. J. Peter, Commun. Soil Sci. Plant Anal. 22, 159 (1991).

    Article  Google Scholar 

  32. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter in Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  33. M. Semenov, E. Blagodatskaya, A. Stepanov, and Y. Kuzyakov, J. Arid Environ. 150, 54 (2018).

    Article  ADS  Google Scholar 

  34. E. E. Andronov, S. N. Petrova, A. G. Pinaev, et al., Euras. Soil Sci. 45 (2), 147 (2012).

    Google Scholar 

  35. S. Thiessen, G. Gleixner, T. Wutzler, and M. Reichstein, Soil Biol. Biochem. 57, 739 (2013).

    Article  Google Scholar 

  36. Z. A. Malik, R. Pandey, and A. B. Bhatt, J. Mountain Sci. 13, 69 (2016).

  37. J. C. C. Yuste, D. D. Baldocchi, A. Gershenson, et al., Glob. Change Biol. 13, 2018 (2007).

    Article  ADS  Google Scholar 

  38. A. A. Larionova, A. N. Maltseva, V. O. Lopes de Gerenyu, et al., Euras. Soil Sci. 50 (4), 422 (2017).

    Google Scholar 

  39. E.-A. Kaiser and O. Heinemeyer, Soil Biol. Biochem. 25 (12), 1649 (1993).

    Article  Google Scholar 

  40. V. M. Semenov, L. A. Ivannikova, and A. S. Tulina, Agrokhimiya 10, 77 (2009).

    Google Scholar 

  41. M. S. Strickland and J. Rousk, Soil Biol. Biochem. 42, 1385 (2010).

    Article  Google Scholar 

  42. M. G. A. Van der Heijden, R. D. Bardgett, and N. M. Van Straalen, Ecol. Lett. 11, 296 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (RFFI-NNSF project no. 18-54-53004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kravchenko.

Additional information

Translated by A. Panyushkina

Abbreviations: OM, organic matter; PCR, polymerase chain reaction; C−CO2, carbon dioxide content recalculated to carbon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menko, E.V., Tikhonova, E.N., Ulanova, R.V. et al. The Temperature Sensitivity of the Processes of the Initial Stage of Microbial Decomposition of Woody Litter in Forest Soil. BIOPHYSICS 63, 769–778 (2018). https://doi.org/10.1134/S0006350918050196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918050196

Navigation