Skip to main content
Log in

Mechanisms of Redox Regulation of Chemoresistance in Tumor Cells by Phenolic Antioxidants

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Effects of water-soluble sulfur-containing phenolic antioxidants sodium 3-(3′-tert-butyl-4′- hydroxyphenyl)propyl thiosulfonate and potassium 3,5-dimethyl-4-hydroxybenzyl thioethanoate on chemoresistance in tumor cells have been studied. The studied phenolic antioxidants cause oppositely directed changes in the redox properties and chemoresistance in tumor cells. Potassium 3,5-dimethyl-4-hydroxybenzyl thioethanoate increases redox buffering capacity and doxorubicin resistance in tumor cells. Sodium 3-(3′- tert-butyl-4′-hydroxyphenyl)propyl thiosulfonate reduces the redox buffering capacity, which leads to a decrease in the chemoresistance of tumor cells. These observations suggest that one of the key mechanisms responsible for the formation of tumor cell resistance to antitumor compounds is the attenuation of apoptosis through increase of redox buffering capacity. The dependence of protein sensor redox state on oxidant concentrations and on redox buffering capacity in cells has been determined based on the proposed biophysical model of redox-dependent mechanism of apoptosis activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Keap1:

Kelch-like ECH-associated protein 1

Nrf2:

NF-E2-related factor 2

ARE:

antioxidant-response element

Klf9:

Kruppel-like factor 9

ROS:

reactive oxygen species

TS-13:

sodium 3-(3′-tert-butyl-4′-hydroxyphenyl)propylthiosulfonate

BEP-11-K:

potassium 3,5-dimethyl-4- hydroxybenzyl thioethanoate

DCF:

2′,7′-dichlorofluorescein

H2DCF:

2′,7′-dichlorodihydrofluorescein

NAC:

N-acetyl-Lcysteine

References

  1. T. W. Kensler, N. Wakabayashi and S. Biswal, Annu. Rev. Pharmacol. Toxicol. 47, 89 (2007).

    Article  Google Scholar 

  2. N. K. Zenkov, E. B. Menshchikova, and V. O. Tkachev, Biochemistry (Moscow) 78 (1), 19 (2013).

    Article  Google Scholar 

  3. N. K. Zenkov, A. V. Chechushkov, P. M. Kozhin, et al., Biochemistry (Moscow) 81 (4), 297 (2016).

    Article  Google Scholar 

  4. C. Xu, C. Y. Li, and A. N. Kong, Arch. Pharm. Res. 28 (3), 249 (2005).

    Article  Google Scholar 

  5. X. J. Wang, Z. Sun, N. F. Villeneuve, et al., Carcinogenesis 29, 1235 (2008).

    Article  Google Scholar 

  6. X. Sun, H. Erb, and T. H. Murphy, Biochem. Biophys. Res. Commun. 326 (2), 371 (2005).

    Article  Google Scholar 

  7. M. Iida, S. Sunaga, N. Hirota, et al., J. Cancer Res. Clin. Oncol. 123, 619 (1997).

    Article  Google Scholar 

  8. S. N. Zucker, E. E. Fink, A. Bagati, et al., Mol. Cell 53 (6), 916 (2014).

    Article  Google Scholar 

  9. A. T. Dinkova-Kostova, J. W. Fahey, and P. Talalay, Meth. Enzymol. 382, 423 (2004).

    Article  Google Scholar 

  10. L. Saso and O. Firuzi, Curr. Drug Targets 15 (13), 1177 (2014).

    Article  Google Scholar 

  11. X. J. Wang, J. D. Hayes, L. G. Higgins, et al., Chem. Biol. 17 (1), 75 (2010).

    Article  Google Scholar 

  12. S. N. Cherenkevich, G. G. Martinovich, I. V. Martinovich, et al., Proc. Nat. Acad. Science of Belarus, Ser. Biol. Sci. No. 1, 92 (2013).

    Google Scholar 

  13. G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, Biophysics (Moscow) 56 (3), 444 (2011).

    Article  Google Scholar 

  14. G. G. Martinovich, I. V. Martinovich, E. B. Menshchikova, et al., Dokl. Nats. Akad. Nauk Belarusi 59 (3), 82 (2015).

    Google Scholar 

  15. G. G. Martinovich, I. V. Martinovich, N. K. Zenkov, et al., Biophysics (Moscow) 60 (1), 94 (2015).

    Article  Google Scholar 

  16. G. G. Martinovich and S. N. Cherenkevich, Biomed. Khim. 51 (6), 626 (2005).

    Google Scholar 

  17. G. G. Martinovich, I. V. Martinovich, and S. N. Cherenkevich, Biophysics (Moscow) 53 (4), 618 (2008).

    Google Scholar 

  18. G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich, et al., Cell Biochem. Biophys. 58 (2), 75 (2010).

    Article  Google Scholar 

  19. G. G. Martinovich, S. N. Cherenkevich, and H. Sauer, Eur. Biophys. J. 34 (7), 937 (2005).

    Article  Google Scholar 

  20. E. Menshchikova, V. Tkachev, A. Lemza, et al., Inflammation Res. 63 (9), 729 (2014).

    Article  Google Scholar 

  21. T. Ohta, K. Iijima, M. Miyamoto, et al., Cancer Res. 68, 1303 (2008).

    Article  Google Scholar 

  22. L. M. Solis, C. Behrens, W. Dong, et al., Clin. Cancer Res. 16, 3743 (2010).

    Article  Google Scholar 

  23. M. B. Sporn and K. T. Liby, Nat. Rev. Cancer 12, 564 (2012).

    Article  Google Scholar 

  24. X. Gào and B. Schöttker, Oncotarget 8 (31), 51888 (2017). doi 10.18632/oncotarget.17128

    Article  Google Scholar 

  25. D. P. Jones, J. Intern. Med. 268, 432 (2010).

    Article  Google Scholar 

  26. L. S. Terada, J. Cell Biol. 174, 615 (2006).

    Article  Google Scholar 

  27. G. G. Martinovich, E. N. Golubeva, I. V. Martinovich, et al., J. Biophys. 2012, 921653 (2012).

    Google Scholar 

  28. G. G. Martinovich, I. V. Martinovich, A. V. Vcherashniaya, et al., Biophysics (Moscow) 61 (6) 963 (2016).

    Article  Google Scholar 

  29. S. Raha and B. H. Robinson, Trends Biochem. Sci. 25, 502 (2000).

    Article  Google Scholar 

  30. H. Sies, Redox Biol. 11, 613 (2017).

    Article  Google Scholar 

  31. A. P. Halestrap, K. Y. Woodfield, and C. P. Connern, J. Biol. Chem. 272, 3346 (1997).

    Article  Google Scholar 

  32. G. Kroemer and J. C. Reed, Nat. Med. 6, 513 (2000).

    Article  Google Scholar 

  33. L. Milkovic, N. Zarkovic, and L. Saso, Redox Biol. 12, 727 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Martinovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinovich, G.G., Martinovich, I.V., Vcherashniaya, A.V. et al. Mechanisms of Redox Regulation of Chemoresistance in Tumor Cells by Phenolic Antioxidants. BIOPHYSICS 62, 942–949 (2017). https://doi.org/10.1134/S000635091706015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091706015X

Keywords

Navigation