Skip to main content
Log in

The Physical and Geometric Properties of Human Transposon Stem–Loop Structures under Natural Selection

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Secondary RNA structures play an important role in transposition, in particular, in RNA recognition by transposon proteins. Previously, we found a conserved structure at the 3′-end of human transposons and proposed a hypothesis about the role of this structure in transposition. Although there is no similarity at the sequence level, the conserved position of this structure points to the fact that structural properties occur that are under positive natural selection. In this paper, the physical and geometric properties of stem-loop structures at the 3′-end of human transposons are identified and compared with properties of the structures of other genome regions. Each stem-loop structure was characterized by a set of ten characteristics: the Gibbs free energy, enthalpy, entropy, hydrophilicity, Shift, Slide, Rise, Tilt, Roll, and Twist. A model has been built using machine-learning methods, which recognizes stem-loop structures according to their physical and geometric characteristics with 94% accuracy. The most important parameters in the recognition model are hydrophilicity, enthalpy, Rise, and Twist. These properties of transposon structure are thought to be under positive natural selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LINE:

long interspersed elements

SINE:

short interspersed elements

References

  1. C. R. Huang, K. H. Burns, and J. D. Boeke, Annu. Rev. Genet. 46, 651 (2012).

    Article  Google Scholar 

  2. E. S. Lander, et al., Nature 409 (6822), 860 (2001).

    Article  ADS  Google Scholar 

  3. D. C. Hancks and H. H. Kazazian, Jr., Curr. Opin. Genet. Dev. 22 (3), 191 (2012).

    Article  Google Scholar 

  4. C. R. Beck, et al., Annu. Rev. Genomics Hum. Genet. 12, 187 (2011).

    Article  Google Scholar 

  5. H. H. Kazazian, Jr., Science 303 (5664), 1626 (2004).

    Article  ADS  Google Scholar 

  6. S. R. Richardson, et al., Microbiol. Spectr. 3 (2), MDNA3-0061-2014 (2015).

  7. Y. Hayashi, et al., Nucleic Acids Res. 42 (16), 10605 (2014).

    Article  Google Scholar 

  8. M. Kajikawa and N. Okada, Cell 111 (3), 433 (2002).

    Article  Google Scholar 

  9. Osanai, M., et al., Mol. Cell Biol. 24 (18), 7902 (2004).

    Article  Google Scholar 

  10. D. Grechishnikova and M. Poptsova, BMC Genomics 17 (1), 992 (2016).

    Article  Google Scholar 

  11. N. M. Luscombe, et al., Genome Biol. 1 (1), REVIEWS001 (2000).

  12. P. Barraud and F. H. Allain, Curr. Top. Microbiol. Immunol. 353, 35 (2012).

    Google Scholar 

  13. W. Chen, et al., Sci. Rep. 6, 35123 (2016).

    Article  ADS  Google Scholar 

  14. W. Chen, et al., Nucleic Acids Res. 41 (6), e68 (2013).

    Article  Google Scholar 

  15. W. Chen, et al., Biomed. Res. Int. 2014, 623149 (2014).

    Google Scholar 

  16. B. Liu, F. Yang, and K. C. Chou, Mol. Ther. Nucleic Acids 7, 267 (2017).

    Article  Google Scholar 

  17. M. Friedel, S. Nikolaiewa, J. Sühnel, and T. Wilhelm, Nucleic Acids Res. 37 (Database issue), D37 (2009).

    Article  Google Scholar 

  18. X. J. Lu and W. K. Olson, Nucleic Acids Res. 31 (17), 5108 (2003).

    Article  Google Scholar 

  19. C. O. Pabo and R. T. Sauer, Annu. Rev. Biochem. 53, 293 (1984).

    Article  Google Scholar 

  20. P. C. van der Vliet and C. P. Verrijzer, Bioessays 15 (1), 25 (1993).

    Article  Google Scholar 

  21. R. E. Dickerson, Nucleic Acids Res. 26 (8), 1906 (1998).

    Article  Google Scholar 

  22. V. A. Tverdislov, Biophysics (Moscow) 58 (1), 128 (2013).

    Article  Google Scholar 

  23. G. Masliah, P. Barraud, and F. H. Allain, Cell. Mol. Life Sci. 70 (11), 1875 (2013).

    Google Scholar 

  24. R. Stefl, L. Skrisovska, and F. H. Allain, EMBO Rep. 6 (1), 33 (2005).

    Article  Google Scholar 

  25. J. R. Williamson, Nat. Struct. Biol. 7 (10), 834 (2000).

    Article  Google Scholar 

  26. J. M. Thomas and P. A. Beal, BioEssays 39 (4), 1600187 (2017).

    Article  Google Scholar 

  27. R. Thapar, A. P. Denmon, and E. P. Nikonowicz, Wiley Interdiscip. Rev. RNA 5 (1), 49 (2014).

    Article  Google Scholar 

  28. K. Wild, I. Sinning, and S. Cusack, Science 294 (5542), 598 (2001).

    Article  ADS  Google Scholar 

  29. G. L. Conn, Science 284 (5417), 1171 (1999).

    Article  ADS  Google Scholar 

  30. D. Moras and A. Poterszman, Curr. Biol. 6 (5), 530 (1996).

    Article  Google Scholar 

  31. A. Barik and R. P. Bahadur, Nucleic Acids Res. 42 (15), 10148 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Grechishnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grechishnikova, D.A., Poptsova, M.S. The Physical and Geometric Properties of Human Transposon Stem–Loop Structures under Natural Selection. BIOPHYSICS 62, 857–864 (2017). https://doi.org/10.1134/S0006350917060070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917060070

Keywords

Navigation