Skip to main content
Log in

Manifestation of the size effect during crystallization and melting of dispersed water in native and amorphous starches with various degrees of hydration

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) was used to study the melting and crystallization of frozen water dispersed in humid potato starch. Melting and crystallization temperatures and heats as functions of the degree of hydration of the starch were obtained for native and amorphous starch states. Manifestations of the size effect were observed in the dependences of heat for the processes in both starch states. Crystallization and melting heats of frozen water were found to change nonlinearly with the increasing degree of hydration in all cases. In contrast, a size effect in the dependences of melting and crystallization temperatures of frozen water was detected only for native starch. Reasons responsible for the absence of a size effect in the amorphous state were considered. Hysteresis, which is characteristic of small particles, was observed upon melting and crystallization of frozen water and its manifestation strongly differed in the native and amorphous states of potato starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Imberty, H. Chanzy, S. Perez, et al., J. Mol. Biol. 201, 365 (1988).

    Article  Google Scholar 

  2. A. Imberty and H. Chanzy, Biopolymers 27, 1205 (1988).

    Article  Google Scholar 

  3. V. P. Yuryev, L. A. Wasserman, N. R. Andreev, et al., in Starch and Starch-containing Origins: Structure, Properties and New Technologies, Ed. by V. P. Yuryev, A. Cesaro, and W. Bergthaller (Nova Science, New York, 2002), pp. 23–55 [in Russian].

  4. V. P. Yuryev, A. N. Danilenko, and I. E. Nemirovskaya, Biofizika 42 (1), 129 (1997).

    Google Scholar 

  5. Water in Polymers, Ed. by S. R. Rowland (Washington, 1980).

  6. Water Relationships in Foods, Ed. by H. Levine and L. Slade (Plenum, New York, 1991).

  7. G. M. Mrevlishvili, Low Temperature Calorimetry of Biological Macromolecules (Metsniereba, Tbilisi, 1984) [in Russian].

    Google Scholar 

  8. Y. H. Roos, Phase Transitions in Foods (Academic, New York, 1995).

    Google Scholar 

  9. Carbohydrates in Food, Ed. by A.-C. Eliasson (Marcel Dekker, New York, 1996).

  10. B. Chai, H. Yoo, and G. H. Pollack, J. Phys. Chem. B 113, 13953 (2009).

    Article  Google Scholar 

  11. B. Chai and G. H. Pollack, J. Phys. Chem. B 114, 5371 (2010).

    Article  Google Scholar 

  12. V. I. Lobyshev and A. B. Solovey, Biophysics (Moscow) 56 (5), 816 (2011).

    Article  Google Scholar 

  13. M. A. Semenov, A. I. Gasan, T. B. Bol’bukh, et al., Biofizika 41 (5), 1007 (1996).

    Google Scholar 

  14. V. Ya. Maleev, M. A. Semenov, A. I. Gasan, et al., Biofizika 38 (5), 768 (1993).

    Google Scholar 

  15. K. Tananuwong and D. S. Reid, Carbohydr. Polym. 58, 345 (2004).

    Article  Google Scholar 

  16. K. Tananuwong and D. S. Reid, J. Agricult. Food Chem. 52, 4308 (2004).

    Article  Google Scholar 

  17. S. Suzuki and S. Kitamura, Food Hydrocolloids 22, 862 (2008).

    Article  Google Scholar 

  18. T. Tran, K. Thitipraphunkul, K. Piyachomkwan, et al., Starch/Stärk 60, 61 (2008).

    Article  Google Scholar 

  19. S. Park, R. A. Venditti, H. Jameel, et al., Carbohydr. Polym. 66, 97 (2006).

    Article  Google Scholar 

  20. F. Franks, CryoLetters 7, 207 (1986).

    Google Scholar 

  21. G. I. Tseretely and O. I. Smirnova, J. Therm. Anal. 38, 1189–1201 (1992).

    Article  Google Scholar 

  22. G. I. Tsereteli, T. V. Belopolskaya, and T. N. Melnik, Biofizika 42 (1), 68 (1997).

    Google Scholar 

  23. T. V. Belopolskaya, G. I. Tsereteli, N. A. Grunina, et al., in Starch Science Progress, Ed. by L. A. Wasserman, G. E. Zaikov, P. Tomasik, (Nova Science, New York, 2011), pp. 1–15.

  24. T. L. Hill, NanoLetters 1, 111 (2001).

    Article  ADS  Google Scholar 

  25. G. N. Makarov, Usp. Fiz. Nauk 180, 185 (2010).

    Article  Google Scholar 

  26. R. S. Berry and B. M. Smirnov, Usp. Fiz. Nauk 179, 147 (2009).

    Article  Google Scholar 

  27. B. Wunderlich, Macromolecular Physics (Academic, New York, 1985; Mir, Moscow, 1984), Vol. 3.

    Google Scholar 

  28. V. A. Bershtein and V. M. Egorov, Differential Scanning Calorimetry in Polymer Physical Chemistry (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  29. Yu. K. Godovskii, Thermophysical Methods of Polymer Analysis (Khimiya, Moscow, 1976) [in Russian].

    Google Scholar 

  30. [?]

  31. N. A. Grunina, G. I. Tsereteli, T. V. Belopolskaya, et al., in Quantitative Chemistry, Biochemistry and Biology. Steps Ahead, Ed. by G. E. Zaikov, O. V. Stoyanov, W. Tyszkiewicz, (Nova Science, New York, 2013), pp. 63–74.

  32. T. V. Belopolskaya, G. I. Tsereteli, N. A. Grunina, et al., Vestn. S.-Peterb. Gos. Univ. Ser. 4, No. 2, 10 (2012).

    Google Scholar 

  33. N. A. Grunina, G. I. Tsereteli, T. V. Belopolskaya, et al., Carbohydr. Polym. 132, 499 (2015).

    Article  Google Scholar 

  34. K. Nakamura, Y. Minagawa, T. Hatakeyama, et al., Thermochim. Acta 416, 135 (2004).

    Article  Google Scholar 

  35. S. P. Gabuda, A. A. Gaidash, V. A. Drebushchak, and S. G. Kozlova, JETP Lett. 82 (9), 613 (2005).

  36. A.-C. Eliasson and M. Gudmundsson, in Carbohydrates in Food, Ed. by A.-C. Eliasson (Marcel Dekker, New York, 1996), pp. 431–503.

  37. S. Hizukuri, in Carbohydrates in food, Ed. by A.-C. Eliasson (Marcel Dekker. Inc., New-York, 1996), pp. 347–429.

  38. A. M. Donald, in Starch in Food: Structure, Function and Applications, Ed. by A.-C. Eliasson (Woodhead Publ., Cambridge, 2004), pp. 156–184.

  39. D. French, in Starch Chemistry and Technology, Ed. by R. L. Whister, J. N. BeMiller, and E. F. Paschall (Academic, Orlando, 1984), pp. 184–242.

  40. P. G. Debenedetti and H. E. Stanley, Physics Today 41, 40 (2003).

    Article  Google Scholar 

  41. G. I. Tsereteli, T. V. Belopolskaya, N. A. Grunina, et al., in Starch and Starch Containing Origins: Structure, Properties and New Technologies, Ed. by V. P. Yuryev, A. Cesaro, and W. Bergthaller (Nova Science, New York, 2002), pp. 99–109.

  42. T. V. Belopolskaya, G. I. Tsereteli, N. A. Grunina, et al., J. Therm. Anal. Calorimetry 92, 677 (2008).

    Article  Google Scholar 

  43. G. I. Tsereteli, T. V. Belopolskaya, and N. A. Grunina, J. Therm. Anal. Calorimetry 92, 711 (2008).

    Article  Google Scholar 

  44. G. I. Tsereteli, T. V. Belopolskaya, N. A. Grunina, et al., in Starch: From Polysaccharides to Granules, Simple and Mixture Gels, Ed. by V. P. Yuryev, P. Tomasik, and H. Ruck (Nova Science, New York, 2004), pp. 121–133.

  45. A. Blenow, in Starch in Food: Structure, Function and Applications, Ed. by A.-C. Eliasson (Woodhead Publ., Cambridge, 2004), pp. 97–127.

  46. E. Bertoft, in Starch in Food: Structure, Function and Applications, Ed. by A.-C. Eliasson (Woodhead Publ., Cambridge, 2004), pp. 57–96.

  47. N. A. Grunina, G. I. Tsereteli, T. V. Belopolskaya, et al., Vestn. S.-Peterb. Gos. Univ., Ser. 4, No. 1, 5 (2014).

    Google Scholar 

  48. L. Mandelkern, Crystallization of Polymers (Cambridge Univ. Press, Cambridge, 1964; Khimiya, Leningrad, 1966).

    Google Scholar 

  49. L. Slade and H. Levine, Carbohydr. Polym. 8, 183 (1988)

    Article  Google Scholar 

  50. K. Zeleznak and R. Hoseney, Cereal Chem. 64, 121 (1987).

    Google Scholar 

  51. V. M. Sokhadze, G. M. Mrevlishvili, and N. G. Esipova, Biofizika 35 (3), 410 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Grunina.

Additional information

Original Russian Text © G.I. Tsereteli, T.V. Belopolskaya, N.A. Grunina, O.I. Smirnova, A.Yu. Romanova, 2017, published in Biofizika, 2017, Vol. 62, No. 1, pp. 53–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsereteli, G.I., Belopolskaya, T.V., Grunina, N.A. et al. Manifestation of the size effect during crystallization and melting of dispersed water in native and amorphous starches with various degrees of hydration. BIOPHYSICS 62, 43–52 (2017). https://doi.org/10.1134/S0006350917010213

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917010213

Keywords

Navigation