Skip to main content
Log in

The role of parvalbumin-containing interneurons in the regulation of spontaneous synchronous activity of brain neurons in culture

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Subtypes of inhibitory GABAergic neurons containing Ca2+-binding proteins play a pivotal role in the regulation of spontaneous synchronous [Ca2+] i transients in a neuronal network. In this study it is shown that: (1) the interneurons that containing Ca2+-binding proteins at buffer concentration can be identified by the shape of Ca2+-signa1 in response to depolarization or activation of ionotropic glutamate receptors; (2) Ca2+-binding proteins are involved in desynchronization of spontaneous Ca2+ transients. At low frequencies of spontaneous synchronous [Ca2+] i transients (less than 0.2 Hz) neurons show quasi-synchronous pulsations. At higher frequencies, synchronization of spontaneous synchronous [Ca2+] i transients occurs in all neurons; (3) it is established that several synchronous oscillations with different frequencies coexist in the network and the amplitude of their depolarizing pulse also varies. This phenomenon is apparently the mechanism that selectively directs information in separate neurons using the same network; and (4) in one population of interneurons at high frequencies of spontaneous synchronous [Ca2+] i transients the inversion of Cl concentration gradient is observed. In this case, the inhibition of GABA(A) receptors suppresses the activity of neurons in this population and excites other neurons in the network. Thus, the GABAergic neurons that contain Ca-binding proteins show different mechanisms to regulate the synchronous neuronal activities in cultured rat hippocampal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GABA:

gamma-aminobutyric acid

PV:

parvalbumin

SST:

spontaneous synchronous transients

NMDA:

N-methyl-D-aspartate

DA:

domoic acid

References

  1. S. R. Cobb, E. H. Buhl, K. Halasy, et al. Nature. 378 (6552), 75 (1995).

    Article  ADS  Google Scholar 

  2. Y. Aponte, J. Bischofberger, and P. Jonas, J. Physiol. 586 (8), 2061 (2008).

    Article  Google Scholar 

  3. G. Maccaferri, J. D. Roberts, P. Szucs, et al., J. Physiol. 524 91, (2000).

    Article  Google Scholar 

  4. D. Orduz, P. Bischop, B. Schwaller, et al., J. Physiol. 591 (13), 3215 (2013).

    Article  Google Scholar 

  5. R. Franconville, G. Revet, G. Astorga, et al., Neurophysiology 106, 1793 (2011).

    Article  Google Scholar 

  6. C. Bernard, R. Cossart, J. C. Hirsch, et al., Epilepsia 41 (6), S90 (2000).

    Article  Google Scholar 

  7. K. Baimbridge, M. Celio, and J. Rogers, Trends Neurosci. 15, 303 (1992).

    Article  Google Scholar 

  8. R. B. Kay and P. C. Brunjes, Front. Cell Neurosci. 8, 111 (2014).

    Article  Google Scholar 

  9. M. R. Celio, Science 231, 995 (1986).

    Article  ADS  Google Scholar 

  10. E. Eggermann and P. Jonas, Nat. Neurosci. 15, 20 (2012).

    Article  Google Scholar 

  11. D. P. Bischop, D. Orduz, L. Lambot, et al., Front. Mol. Neurosci. 5, 78 (2012).

    Article  Google Scholar 

  12. G. Cheron, D. Gall, L. Servais, et al., J. Neurosci. 24 (2), 434 (2004).

    Article  Google Scholar 

  13. M. Muler, F. Felmy, B. Schwaller, et al., J. Neurosci. 27, 2261 (2007).

    Article  Google Scholar 

  14. T. Collin, M. Chat, M. G. Lucas, et al., Neurosci. 25 (1), 96 (2005).

    Article  Google Scholar 

  15. D. Gall, C. Roussel, T. Nieus, et al., Prog. Brain Res. 148, 321 (2005).

    Article  Google Scholar 

  16. D. Gall, C. Roussel, I. Susa, et al., J. Neurosci. 23 (28), 9320 (2003).

    Google Scholar 

  17. B. Hirschberg, J. Maylie, J. P. Adelman, and N. V. Marrion, J. Gen. Physiol. 111, 565 (1998).

    Article  Google Scholar 

  18. X. M. Xia, B. Fakler, A. Rivard, et al., Nature 395, 503 (1998).

    Article  ADS  Google Scholar 

  19. B. Cauli, E. Audinat, B. Lambolez, et al., J. Neurosci. 17, 3894 (1997).

    Google Scholar 

  20. Y. Kawaguchi and Y. Kubota, Cereb. Cortex 7, 476 (1997).

    Article  Google Scholar 

  21. F. Maingret, B. Coste, J. Hao, et al., Neuron 59 (3), 439 (2008).

    Article  Google Scholar 

  22. T. P. Patela, K. Mana, B. L. Firestein, and D. F. Meaneya, J. Neurosci. Meth. 243 26, (2015).

    Article  Google Scholar 

  23. M. V. Turovskaya, E. A. Turovskii, A. V. Kononov, and V. P. Zinchenko, Biol. Membrany 30 (5–6), 479 (2013).

    Google Scholar 

  24. O. L. Barreto-Chang and R. E. Dolmetsch, J. Vis. Exp. 23, 1067 (2009).

    Google Scholar 

  25. A. V. Kononov, N. V. Ball, and V. P. Zinchenko, Biochemistry (Moscow), Ser. A: Membr. Cell. Biol. 5 (2), 153 (2011).

    Article  Google Scholar 

  26. A. V. Kononov, S. V. Ivanov, and V. P. Zinchenko, Russ. Fiziol. Zh. im. I.M. Sechenova 99 (1), 63 (2013).

    Google Scholar 

  27. V. V. Dynnik, A. V. Kononov, A. V. Sergeev, et al., PLOS ONE 10 (7), e0134145 (2015). doi 10.1371/journal.pone.0134145

    Article  Google Scholar 

  28. C. Schwarz, S. Ferrea, K. Quasthoff, et al., Exp. Neurol. 235, 368 (2012).

    Article  Google Scholar 

  29. H. Schmidt, G. Petkov, M. P. Richardson, and J. R. Terry, PLoS Comput. Biol. 10 (11), e1003947 (2014).

    Article  ADS  Google Scholar 

  30. J. F. Hipp, A. K. Engel, and M. Siegel, Neuron 69, 387 (2011).

    Article  Google Scholar 

  31. A. Fukuda, K. Muramatsu, et al., J. Neurophysiol. 79 (1), 439 (1998).

    Google Scholar 

  32. K. Ganguly, A. F. Schinder, et al., Cell 105 (4), 521 (2001).

    Article  Google Scholar 

  33. A. V. Kononov, N. V. Ball, and V. P. Zinchenko, Biol. Membrany 29 (1), 133 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zinchenko.

Additional information

Original Russian Text © V.P. Zinchenko, M.V. Turovskaya, I.Yu. Teplov, A.V. Berezhnov, E.A. Turovsky, 2016, published in Biofizika, 2016, Vol. 61, No. 1, pp. 102–111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchenko, V.P., Turovskaya, M.V., Teplov, I.Y. et al. The role of parvalbumin-containing interneurons in the regulation of spontaneous synchronous activity of brain neurons in culture. BIOPHYSICS 61, 85–93 (2016). https://doi.org/10.1134/S0006350916010280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916010280

Keywords

Navigation