Skip to main content
Log in

Study of some aspects of the mechanism of bacterial synthesis of silver sulfide nanoparticles by metal-reducing bacteria Shewanella oneidensis MR-1

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In the present work it was shown that biosynthesis of silver sulfide nanoparticles from silver nitrate and sodium thiosulfate solutions of millimolar concentration occurs efficiently by living Shewanella oneidensis MR-1 cells, as well as by ultrasonically-disrupted cells and by the membrane fraction of the cells. The size of nanoparticles synthesized in the presence of living cells was 7.8 ± 1.5 nm, while in the presence of ultrasonically-disrupted cells — it was 6.5 ± 2 nm. The shape of nanoparticles in both cases was close to spherical. It was also shown, that synthesis of nanoparticles occurs in a cell-free solution of sodium thiosulfate that has been incubated with cells previously and to which then a silver nitrate solution was added. In this case the nanoparticles were of elongated shape and their size was (11 ± 4) × (24 ± 6) nm. In the control experiment, when only silver nitrate and sodium thiosulfate solutions not incubated with cells were used, the nanoparticles were not detected. It was shown that biosynthesis of nanoparticles occurs both in aerobic and anaerobic conditions. Nanoparticles are not formed by using thermally inactivated cells as it was shown by us previously. The results show the important role of the native structures of cells for the nanoparticles formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci. 156, 1 (2010).

    Article  Google Scholar 

  2. K. Quester, M. Avalos-Borja, and E. Castro-Longoria, Micron 54–55, 1 (2013).

    Article  Google Scholar 

  3. B. Dong, C. Li, G. Chen, et al., Imaging. Chem. Mater 25(12), 2503 (2013).

    Article  Google Scholar 

  4. J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, et al., Nat. Biotechnol. 20, 1118 (2002).

    Article  Google Scholar 

  5. A. S. Beliaev, D. M. Klingeman, J. A. Klappenbach, et al., J. Bacteriol. 187, 7138 (2005).

    Article  Google Scholar 

  6. L. A. Fitzgerald, E. R. Petersen, B. J. Gross, et al., Biosensors and Bioelectronics 31, 492 (2012).

    Article  Google Scholar 

  7. H. H. Hau and J. A. Gralnick, Rev. Microbiol. 61, 237 (2007).

    Article  Google Scholar 

  8. A. K. Suresh, D. A. Pelleter, W. Wang, et al., Acta Biomateriala 7, 2148 (2011).

    Article  Google Scholar 

  9. S. Jiang, Ji-H. Lee, M.-G. Kim, et al., Applied and Environ. Microbiol. 75, 6896 (2009).

    Article  Google Scholar 

  10. W. D. Burgos, J. T. McDonongh, J. M. Senko, et al., Geochim. Cosmochim. Acta 72, 4901 (2008).

    Article  ADS  Google Scholar 

  11. A. K. Suresh, M. J. Doktycz, W. Wang, et al., Acta Biomateriala 7, 4253 (2011).

    Article  Google Scholar 

  12. V. G. Debabov, T. A. Voeikova, A. S. Shebanova, et al., Nanotechnologies Russ. 8, 269 (2013).

    Article  Google Scholar 

  13. M. F. Lengke, M. E. Fleet, and G. Southam, Langmuir 22, 7318 (2006).

    Article  Google Scholar 

  14. X. Wei, M. Luo, W. Li, et al., Bioresour Technol. 103, 273 (2012).

    Article  Google Scholar 

  15. K. S. Prasad, P. Vyas, V. Prajapati, et al., Micro &Nano Letters IET 7, 1 (2012).

    Article  Google Scholar 

  16. J. L. Burns and T. J. DiChristina, Appl. Envir. Microbiol. 75, 5209 (2009).

    Article  Google Scholar 

  17. L. Stoffels, M. Krehenbrink, B. C. Berks, and G. Unden, J. Bacteriol. 194(2), 475 (2012).

    Article  Google Scholar 

  18. Z. Dawood, L. Ehrenreich, and V. S. Broëzel, FEMS Microbiology Letters 164, 383 (1998).

    Article  Google Scholar 

  19. C. K. Ng, K. Sivakumar, X. Liu, et al., Biotechnol. Bioeng. 110, 1831 (2013).

    Article  Google Scholar 

  20. S. S. Ruebush, G. A. Icopini, S. L. Brantley, and M. Tien, Geochim. Cosmochim. Acta 70, 56 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shebanova.

Additional information

Original Russian Text © A.S. Shebanova, T.A. Voeikova, A.V. Egorov, L.M. Novikova, I.N. Krestyanova, L. K. Emelyanova, V.G. Debabov, M.P. Kirpichnikov, K.V. Shaytan, 2014, published in Biofizika, 2014, Vol. 59, No. 3, pp. 500–507.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shebanova, A.S., Voeikova, T.A., Egorov, A.V. et al. Study of some aspects of the mechanism of bacterial synthesis of silver sulfide nanoparticles by metal-reducing bacteria Shewanella oneidensis MR-1. BIOPHYSICS 59, 408–414 (2014). https://doi.org/10.1134/S0006350914030221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914030221

Keywords

Navigation