Skip to main content
Log in

In vitro evaluation of crystalline silicon nanoparticles cytotoxicity

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of silicon-based nanoparticles on viability and cellular organelle state were evaluated in human lymphocytes in vitro. We did not find any changes in cell viability in experimental groups compared to control. Cell death occurred mainly due to apoptosis and late apoptosis, and necrosis/apoptosis ratio in the control and after exposure to nanoparticles remained unchanged. All silicon-based nanoparticles (Si, SiB, SiPd) caused an increase of reactive oxygen species in the cells. Evaluation of mitochondria and lysosomes state after interaction with modified nanoparticles demonstrated slight decrease in its function. Thus, modification of silicon nanoparticles did not significantly reduce their biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lu, M. Liong, Z. Li, et al., NIH Public Access 6(16), 1794 (2011).

    Google Scholar 

  2. K. Fujoka, S. Hanada, F. Kanaya, et al., J. Phys.: Conf. Series 304 (2011).

  3. V. A. Livshits, I. V. Demisheva, and B. B. Meshkov, Ross. Nanotekhologii 4(1–2), 99 (2009).

    Google Scholar 

  4. A. Shiohara, S. Hanada, S. Prabakar, et al., J. Am. Chem. Soc. 138(1), 248 (2010).

    Article  Google Scholar 

  5. Yu. A. Koldaeva, E. Yu. Grigor’eva, and V. N. Kulakov, Luchevaya Terapiya 2,(1) (2011).

    Google Scholar 

  6. V. N. Mitin, N. G. Kozlovskaya, and A. M. Arnopol’skaya, Onkologiya, no. 1, (2006).

  7. Y. J. Wang, Am. Cem. Sac. No. 116, 397 (1994).

    Google Scholar 

  8. A. E. Nel, L. Mädler, D. Velegol, et al., Nature Materials 8(7), 543 (2009).

    Article  ADS  Google Scholar 

  9. M. S. Thibodeau, C. Giardina, D. A. Knecht, et al., Toxicological sciences: an official journal of the Society of Toxicology 80(1), 34 (2004).

    Article  Google Scholar 

  10. W. Lin, Y-w Huang, X-D Zhou, et al., Toxicol. Appl. Pharmacol. 217(3), 252 (2006).

    Article  Google Scholar 

  11. S. K. Sohaebuddin, P. T. Thevenot, D. Baker, et al., Particle and fibre toxicology 7, 22 (2010).

    Article  Google Scholar 

  12. Ji-Ho Park., L. Gu, G. von Maltzahn, et al., Nature Materials (8) (2009).

    Google Scholar 

  13. Z. F. Li and E. Ruckenstein, Nano Lett. 4(8), 1463 (2004).

    Article  ADS  Google Scholar 

  14. J. H. Warner, A. Hoshino, and K. Yamamoto, Imaging Agents 117, 4626 (2005).

    Google Scholar 

  15. A. Vladimirov, S. Korovin, A. Surkov, et al., Laser Phys. 21(4), 830 (2011).

    Article  ADS  Google Scholar 

  16. E. Kelm, S. Korovin, V. Pustovoy, et al., Appl. Phys. B: Lasers and optics 105(3), 599 (2011).

    Article  ADS  Google Scholar 

  17. V. Beklemishev, V. Pustovoy, S. Korovin, et al., Nanoindustriya (5), 44 (2011).

    Google Scholar 

  18. E. R. Andreeva, E. G. Rudimov, and A. N. Gornostaeva, Byul. Eksperim. Biol. Med. 155(3), 377 (2013).

    Google Scholar 

  19. M. Green and E. Hawman, Chem. Commun. (Cambridge, England, No. 1, 123 (2005).

    Google Scholar 

  20. B. I. Ipe, M. Lehnig, and C. M. Niemeyer, Small (Weinheim an der Bergstrasse, Germany) 1(7), 706 (2005).

    Article  Google Scholar 

  21. J. Lovri, S. J. Cho, F. M. Winnik, et al., Chem. Biol. 12(11), 1227 (2005).

    Article  Google Scholar 

  22. B. Halamoda Kenzaoui, C. Chapuis Bernasconi, S. Guney-ayra, et al., Biochem. J. 441(3), 813 (2012).

    Article  Google Scholar 

  23. M. N. Moore, J. A. J. Redman, J. W. Redman, et al., Nanotoxicology 3(1), 40 (2009).

    Article  Google Scholar 

  24. K. Fujioka, M. Hiruoka, K. Sato, et al., Nanotechnology 19(41), 415102 (2008).

    Article  Google Scholar 

  25. N. O’Farrell, A. Houlton, and B. R. Horrocks, Int. J. Nanomedicine 1(4), 451 (2006).

    Article  Google Scholar 

  26. J. M. Hansen, Y-M. Go, and D. P. Jones, Ann. Rev. Pharmacol. Toxicol. 46, 215 (2006).

    Article  Google Scholar 

  27. M. Dusica, B. Maik, and P. Ewa, NanoPharmaceuticals Online J. 1, 1 (2006).

    Google Scholar 

  28. D. J. Klionsky, Nature Rev. Mol. Cell Biol. 8(11), 931 (2007).

    Article  Google Scholar 

  29. M. N. Moore, Histochemical 22, 187 (1990).

    Article  Google Scholar 

  30. M. N. Moore, M. H. Depledge, J. W. Readman, et al., Mutation Res. 552, 247 (2004).

    Article  Google Scholar 

  31. M. N. Moore, D. Lowe, and A. Köhler, ICES Techniques in Marine Environmental Sciences (36), 31 (2004).

    Google Scholar 

  32. S. T. Stern, P. P. Adiseshaiah, and R. M. Crist, Part. Fibre Toxicol. 9, 20 (2012).

    Article  Google Scholar 

  33. T. Xia, M. Kovochich, M. Liong, et al., ACS Nano 2(1), 85 (2008).

    Article  Google Scholar 

  34. U. T. Brunk and I. Svensson, RedoxRep. 4(1–2), 3 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Buravkova.

Additional information

Original Russian Text © A.N. Shubenkov, S.B. Korovin, E.R. Andreeva, L.B. Buravkova, V.I. Pustovoy, 2014, published in Biofizika, 2014, Vol. 59, No. 1, pp. 134–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubenkov, A.N., Korovin, S.B., Andreeva, E.R. et al. In vitro evaluation of crystalline silicon nanoparticles cytotoxicity. BIOPHYSICS 59, 105–109 (2014). https://doi.org/10.1134/S0006350914010205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914010205

Keywords

Navigation