Skip to main content
Log in

Rational Design of Drugs Targeting G-Protein-Coupled Receptors: A Structural Biology Perspective

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) play a key role in the transduction of extracellular signals to cells and regulation of many biological processes, which makes these membrane proteins one of the most important targets for pharmacological agents. A significant increase in the number of resolved atomic structures of GPCRs has opened the possibility of developing pharmaceuticals targeting these receptors via structure-based drug design (SBDD). SBDD employs information on the structure of receptor–ligand complexes to search for selective ligands without the need for an extensive high-throughput experimental ligand screening and can significantly expand the chemical space for ligand search. In this review, we describe the process of deciphering GPCR structures using X-ray diffraction analysis and cryoelectron microscopy as an important stage in the rational design of drugs targeting this receptor class. Our main goal was to present modern developments and key features of experimental methods used in SBDD of GPCR-targeting agents to a wide range of specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Abbreviations

BRIL:

thermostabilized apocytochrome b562

CCD:

coupled charge device

cryo-EM:

cryo-electron microscopy

Fab fragment:

antigen-binding antibody fragment

GPCR:

G protein-coupled receptor

ICL3:

intracellular loop 3

LCP:

lipidic cubic phase

MMS:

membrane modeling system

MX:

macromolecular crystallography

SR:

synchrotron radiation

SBDD:

structure based drug design

SFX:

serial femtosecond X-ray crystallography

SWSX:

small-wedge synchrotron crystallography

XFEL:

X-ray free electron laser

References

  1. Hughes, J. P., Rees, S., Kalindjian, S. B., and Philpott, K. L. (2011) Principles of early drug discovery, Br. J. Pharmacol., 162, 1239-1249, https://doi.org/10.1111/j.1476-5381.2010.01127.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., and Schacht, A. L. (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge, Nat. Rev. Drug Discov., 9, 203-214, https://doi.org/10.1038/nrd3078.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, R., Li, X., and Lam, K. S. (2017) Combinatorial chemistry in drug discovery, Curr. Opin. Chem. Biol., 38, 117-126, https://doi.org/10.1016/j.cbpa.2017.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nguyen, A. T. N., Nguyen, D. T. N., Koh, H. Y., Toskov, J., MacLean, W., Xu, A., Zhang, D., Webb, G. I., May, L. T., and Halls, M. L. (2023) The application of artificial intelligence to accelerate G protein-coupled receptor drug discovery, Br. J. Pharmacol., https://doi.org/10.1111/bph.16140.

    Article  PubMed  Google Scholar 

  5. Van Montfort, R. L. M., and Workman, P. (2017) Structure-based drug design: aiming for a perfect fit, Essays Biochem., 61, 431-437, https://doi.org/10.1042/EBC20170052.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beddell, C. R., Goodford, P. J., Norrington, F. E., Wilkinson, S., and Wootton, R. (1976) Compounds designed to fit a site of known structure in human haemoglobin, Br. J. Pharmacol., 57, 201-209, https://doi.org/10.1111/j.1476-5381.1976.tb07468.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Talele, T. T., Khedkar, S. A., and Rigby, A. C. (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic, Curr. Top. Med. Chem., 10, 127-141, https://doi.org/10.2174/156802610790232251.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, C. U., Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B., Tai, C. Y., Laver, W. G., and Stevens, R. C. (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity, J. Am. Chem. Soc., 119, 681-690, https://doi.org/10.1021/ja963036t.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, K.-F., Yuan, C., Du, Y.-M., Sun, K.-L., Zhang, X.-K., Vogel, H., Jia, X.-D., Gao, Y.-Z., Zhang, Q.-F., Wang, D.-P., and Zhang, H.-W. (2023) Applications and prospects of cryo-EM in drug discovery, Mil. Med. Res., 10, 10, https://doi.org/10.1186/s40779-023-00446-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Editorial (2016) Method of the Year 2015, Nat. Methods, 13, 1, https://doi.org/10.1038/nmeth.3730.

  11. Robertson, M. J., Meyerowitz, J. G., and Skiniotis, G. (2022) Drug discovery in the era of cryo-electron microscopy, Trends Biochem. Sci., 47, 124-135, https://doi.org/10.1016/j.tibs.2021.06.008.

    Article  CAS  PubMed  Google Scholar 

  12. Renaud, J.-P., Chari, A., Ciferri, C., Liu, W.-T., Rémigy, H.-W., Stark, H., and Wiesmann, C. (2018) Cryo-EM in drug discovery: achievements, limitations and prospects, Nat. Rev. Drug Discov., 17, 471-492, https://doi.org/10.1038/nrd.2018.77.

    Article  CAS  PubMed  Google Scholar 

  13. Mishin, A., Gusach, A., Luginina, A., Marin, E., Borshchevskiy, V., and Cherezov, V. (2019) An outlook on using serial femtosecond crystallography in drug discovery, Expert Opin. Drug Discov., 14, 933-945, https://doi.org/10.1080/17460441.2019.1626822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, https://doi.org/10.1038/s41586-021-03819-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., et al. (2021) Accurate prediction of protein structures and interactions using a three-track neural network, Science, 373, 871-876, https://doi.org/10.1126/science.abj8754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Selinsky, B. S. (2003) Membrane Protein Protocols, Humana Press, https://doi.org/10.1385/159259400x.

  17. Luginina, A., Maslov, I., Khorn, P., Volkov, O., Khnykin, A., Kuzmichev, P., Shevtsov, M., Belousov, A., Dashevskii, D., Kornilov, D., et al. (2023) Functional GPCR expression in eukaryotic LEXSY system, J. Mol. Biol., 23, 168310, https://doi.org/10.1016/j.jmb.2023.168310.

    Article  CAS  Google Scholar 

  18. Quitterer, U., Pohl, A., Langer, A., Koller, S., and Abdalla, S. (2011) A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor, Biochem. Biophys. Res. Commun., 409, 544-549, https://doi.org/10.1016/j.bbrc.2011.05.041.

    Article  CAS  PubMed  Google Scholar 

  19. Shepard, B. D., Natarajan, N., Protzko, R. J., Acres, O. W., and Pluznick, J. L. (2013) A cleavable N-terminal signal peptide promotes widespread olfactory receptor surface expression in HEK293T cells, PLoS One, 8, e68758, https://doi.org/10.1371/journal.pone.0068758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarkar, C. A., Dodevski, I., Kenig, M., Dudli, S., Mohr, A., Hermans, E., and Plückthun, A. (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity, Proc. Natl. Acad. Sci. USA, 105, 14808-14813, https://doi.org/10.1073/pnas.0803103105.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schlinkmann, K. M., and Plückthun, A. (2013) Directed evolution of G-protein-coupled receptors for high functional expression and detergent stability, Methods Enzymol., 520, 67-97, https://doi.org/10.1016/B978-0-12-391861-1.00004-6.

    Article  CAS  PubMed  Google Scholar 

  22. Warne, T., Serrano-Vega, M. J., Tate, C. G., and Schertler, G. F. X. (2009) Development and crystallization of a minimal thermostabilised G protein-coupled receptor, Protein Expr. Purif., 65, 204-213, https://doi.org/10.1016/j.pep.2009.01.014.

    Article  CAS  PubMed  Google Scholar 

  23. Chun, E., Thompson, A. A., Liu, W., Roth, C. B., Griffith, M. T., Katritch, V., Kunken, J., Xu, F., Cherezov, V., Hanson, M. A., and Stevens, R. C. (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors, Structure, 20, 967-976, https://doi.org/10.1016/j.str.2012.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H.-J., Kuhn, P., Weis, W. I., Kobilka, B. K., et al. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor, Science, 318, 1258-1265, https://doi.org/10.1126/science.1150577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, W., Chun, E., Thompson, A. A., Chubukov, P., Xu, F., Katritch, V., Han, G. W., Roth, C. B., Heitman, L. H., IJzerman, A. P., et al. (2012) Structural basis for allosteric regulation of GPCRs by sodium ions, Science, 337, 232-236, https://doi.org/10.1126/science.1219218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyagi, H., Suzuki, M., Yasunaga, M., Asada, H., Iwata, S., and Saito, J. I. (2023) Structural insight into an anti-BRIL Fab as a G-protein-coupled receptor crystallization chaperone, Acta Crystallogr. D. Struct. Biol., 79, 435-441, https://doi.org/10.1107/S205979832300311X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebon, G., Warne, T., Edwards, P. C., Bennett, K., Langmead, C. J., Leslie, A. G. W., and Tate, C. G. (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation, Nature, 474, 521-525, https://doi.org/10.1038/nature10136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niesen, M. J. M., Bhattacharya, S., Grisshammer, R., Tate, C. G., and Vaidehi, N. (2013) Thermostabilization of the β1-adrenergic receptor correlates with increased entropy of the inactive state, J. Phys. Chem. B, 117, 7283-7291, https://doi.org/10.1021/jp403207c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vaidehi, N., Grisshammer, R., and Tate, C. G. (2016) How can mutations thermostabilize G-protein-coupled receptors? Trends Pharmacol. Sci., 37, 37-46, https://doi.org/10.1016/j.tips.2015.09.005.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, L.-K., and Tao, Y.-X. (2020) Alanine scanning mutagenesis of the DRYxxI motif and intracellular loop 2 of human melanocortin-4 receptor, Int. J. Mol. Sci., 21, 7611, https://doi.org/10.3390/ijms21207611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shibata, Y., Gvozdenovic-Jeremic, J., Love, J., Kloss, B., White, J. F., Grisshammer, R., and Tate, C. G. (2013) Optimising the combination of thermostabilising mutations in the neurotensin receptor for structure determination, Biochim. Biophys. Acta, 1828, 1293-1301, https://doi.org/10.1016/j.bbamem.2013.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robertson, N., Jazayeri, A., Errey, J., Baig, A., Hurrell, E., Zhukov, A., Langmead, C. J., Weir, M., and Marshall, F. H. (2011) The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery, Neuropharmacology, 60, 36-44, https://doi.org/10.1016/j.neuropharm.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  33. Popov, P., Peng, Y., Shen, L., Stevens, R. C., Cherezov, V., Liu, Z.-J., and Katritch, V. (2018) Computational design of thermostabilizing point mutations for G protein-coupled receptors, Elife, 7, e34729, https://doi.org/10.7554/eLife.34729.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Munk, C., Mutt, E., Isberg, V., Nikolajsen, L. F., Bibbe, J. M., Flock, T., Hanson, M. A., Stevens, R. C., Deupi, X., and Gloriam, D. E. (2019) An online resource for GPCR structure determination and analysis, Nat. Methods, 16, 151-162, https://doi.org/10.1038/s41592-018-0302-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng, Y., McCorvy, J. D., Harpsøe, K., Lansu, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., et al. (2018) 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology, Cell, 172, 719-730.e14, https://doi.org/10.1016/j.cell.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luginina, A., Gusach, A., Marin, E., Mishin, A., Brouillette, R., Popov, P., Shiriaeva, A., Besserer-Offroy, É., Longpré, J.-M., Lyapina, E., et al. (2019) Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs, Sci. Adv., 5, eaax2518, https://doi.org/10.1126/sciadv.aax2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gusach, A., Luginina, A., Marin, E., Brouillette, R. L., Besserer-Offroy, É., Longpré, J.-M., Ishchenko, A., Popov, P., Patel, N., Fujimoto, T., et al. (2019) Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors, Nat. Commun., 10, 5573, https://doi.org/10.1038/s41467-019-13348-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, X., Hua, T., Vemuri, K., Ho, J.-H., Wu, Y., Wu, L., Popov, P., Benchama, O., Zvonok, N., Locke, K.’ara, et al. (2019) Crystal structure of the human cannabinoid receptor CB2, Cell, 176, 459-467.e13, https://doi.org/10.1016/j.cell.2018.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dmitrieva, D. A., Kotova, T. V., Safronova, N. A., Sadova, A. A., Dashevskii, D. E., and Mishin, A. V. (2023) Protein design strategies for the structural-functional studies of G protein-coupled receptors, Biochemistry (Moscow), 88, S192-S226, https://doi.org/10.1134/S0006297923140110.

    Article  CAS  PubMed  Google Scholar 

  40. Lavington, S., and Watts, A. (2020) Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments, Biophys. Rev., 12, 1287-1302, https://doi.org/10.1007/s12551-020-00775-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alexandrov, A. I., Mileni, M., Chien, E. Y. T., Hanson, M. A., and Stevens, R. C. (2008) Microscale fluorescent thermal stability assay for membrane proteins, Structure, 16, 351-359, https://doi.org/10.1016/j.str.2008.02.004.

    Article  CAS  PubMed  Google Scholar 

  42. Landau, E. M., and Rosenbusch, J. P. (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins, Proc. Natl. Acad. Sci. USA, 93, 14532-14535, https://doi.org/10.1073/pnas.93.25.14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caffrey, M. (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases, Annu. Rev. Biophys., 38, 29-51, https://doi.org/10.1146/annurev.biophys.050708.133655.

    Article  CAS  PubMed  Google Scholar 

  44. Kors, C. A., Wallace, E., Davies, D. R., Li, L., Laible, P. D., and Nollert, P. (2009) Effects of impurities on membrane-protein crystallization in different systems, Acta Crystallogr. D Biol. Crystallogr., 65, 1062-1073, https://doi.org/10.1107/S0907444909029163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bogorodskiy, A., Frolov, F., Mishin, A., Round, E., Polovinkin, V., Cherezov, V., Gordeliy, V., Büldt, G., Gensch, T., and Borshchevskiy, V. (2015) Nucleation and growth of membrane protein crystals in meso – a fluorescence microscopy study, Crystal Growth Des., 15, 5656-5660, https://doi.org/10.1021/acs.cgd.5b01061.

    Article  CAS  Google Scholar 

  46. Caffrey, M., and Cherezov, V. (2009) Crystallizing membrane proteins using lipidic mesophases, Nat. Protoc., 4, 706-731, https://doi.org/10.1038/nprot.2009.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, F., Liu, W., Hanson, M. A., Stevens, R. C., and Cherezov, V. (2011) Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases, Crystal Growth Des., 11, 1193-1201, https://doi.org/10.1021/cg101385e.

    Article  CAS  Google Scholar 

  48. Li, D., Boland, C., Walsh, K., and Caffrey, M. (2012) Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases, J. Vis. Exp., 67, e4000, https://doi.org/10.3791/4000.

    Article  CAS  Google Scholar 

  49. Ishchenko, A., Cherezov, V., and Liu, W. (2016) Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography, J. Vis. Exp., 115, e54463, https://doi.org/10.3791/54463.

    Article  CAS  Google Scholar 

  50. Hendrickson, W. A. (2014) Anomalous diffraction in crystallographic phase evaluation, Q. Rev. Biophys., 47, 49-93, https://doi.org/10.1017/S0033583514000018.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Willmott, P. (2019) An Introduction to Synchrotron Radiation: Techniques and Applications, John Wiley & Sons, https://doi.org/10.1002/9781119280453.

  52. Pellegrini, C. (2012) The history of X-ray free-electron lasers, Eur. Phys. J., 37, 659-708, https://doi.org/10.1140/epjh/e2012-20064-5.

    Article  Google Scholar 

  53. Kurilko, V. I., and Tkach, Y. V. (1995) Physical mechanisms of generation of coherent radiation in an ultrarelativistic free-electron laser, Usp. Fiz. Nauk, 165, 241-261.

    Article  Google Scholar 

  54. Ponchut, C. (2006) Characterization of X-ray area detectors for synchrotron beamlines, J. Synchrotron Radiat., 13, 195-203, https://doi.org/10.1107/S0909049505034278.

    Article  CAS  PubMed  Google Scholar 

  55. Walter, R. L., Thiel, D. J., Barna, S. L., Tate, M. W., Wall, M. E., Eikenberry, E. F., Gruner, S. M., and Ealick, S. E. (1995) High-resolution macromolecular structure determination using CCD detectors and synchrotron radiation, Structure, 3, 835-844, https://doi.org/10.1016/s0969-2126(01)00218-0.

    Article  CAS  PubMed  Google Scholar 

  56. Heijne, E. H. M., Jarron, P., Olsen, A., and Redaelli, N. (1988) The silicon micropattern detector: a dream? Nucl. Instrum. Methods Phys. Res. A, 273, 615-619, https://doi.org/10.1016/0168-9002(88)90065-4.

    Article  Google Scholar 

  57. Delpierre, P. (1994) Pixels detectors and silicon X-rays detectors, J. Phys., 04, C9-11-C9-18, https://doi.org/10.1051/jp4:1994902.

    Article  Google Scholar 

  58. Brönnimann, C., and Trüb, P. (2016) in Accelerator Physics, Instrumentation and Science Applications (Jaeschke, E., Khan, S., Schneider, J., Hastings, J., eds) Springer, Cham, pp. 995-1027, https://doi.org/10.1007/978-3-319-14394-1_36.

  59. Caffrey, M. (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 71, 3-18, https://doi.org/10.1107/S2053230X14026843.

    Article  CAS  Google Scholar 

  60. Smith, J. L., Fischetti, R. F., and Yamamoto, M. (2012) Micro-crystallography comes of age, Curr. Opin. Struct. Biol., 22, 602-612, https://doi.org/10.1016/j.sbi.2012.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Helliwell, J. R., and Mitchell, E. P. (2015) Synchrotron radiation macromolecular crystallography: science and spin-offs, IUCrJ, 2, 283-291, https://doi.org/10.1107/S205225251402795X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sanishvili, R., Yoder, D. W., Pothineni, S. B., Rosenbaum, G., Xu, S., Vogt, S., Stepanov, S., Makarov, O. A., Corcoran, S., Benn, R., et al. (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam, Proc. Natl. Acad. Sci. USA, 108, 6127-6132, https://doi.org/10.1073/pnas.1017701108.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kmetko, J., Husseini, N. S., Naides, M., Kalinin, Y., and Thorne, R. E. (2006) Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures, Acta Crystallogr. D Biol. Crystallogr., 62, 1030-1038, https://doi.org/10.1107/S0907444906023869.

    Article  CAS  PubMed  Google Scholar 

  64. Garman, E. F. (2010) Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr. D Biol. Crystallogr., 66, 339-351, https://doi.org/10.1107/S0907444910008656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baba, S., Matsuura, H., Kawamura, T., Sakai, N., Nakamura, Y., Kawano, Y., Mizuno, N., Kumasaka, T., Yamamoto, M., and Hirata, K. (2021) Guidelines for de novo phasing using multiple small-wedge data collection, J. Synchrotron Radiat., 28, 1284-1295, https://doi.org/10.1107/S1600577522001655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hilgart, M. C., Sanishvili, R., Ogata, C. M., Becker, M., Venugopalan, N., Stepanov, S., Makarov, O., Smith, J. L., and Fischetti, R. F. (2011) Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals, J. Synchrotron Radiat., 18, 717-722, https://doi.org/10.1107/S0909049511029918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A., and Chapman, H. (2014) Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data, J. Appl. Crystallogr., 47, 1118-1131, https://doi.org/10.1107/S1600576714007626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Svensson, O., Malbet-Monaco, S., Popov, A., Nurizzo, D., and Bowler, M. W. (2015) Fully automatic characterization and data collection from crystals of biological macromolecules, Acta Crystallogr. D Biol. Crystallogr., 71, 1757-1767, https://doi.org/10.1107/S1399004715011918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marin, E., Luginina, A., Gusach, A., Kovalev, K., Bukhdruker, S., Khorn, P., Polovinkin, V., Lyapina, E., Rogachev, A., Gordeliy, V., et al. (2020) Small-wedge synchrotron and serial XFEL datasets for Cysteinyl leukotriene GPCRs, Sci. Data, 7, 388, https://doi.org/10.1038/s41597-020-00729-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Segala, E., Guo, D., Cheng, R. K. Y., Bortolato, A., Deflorian, F., Doré, A. S., Errey, J. C., Heitman, L. H., IJzerman, A. P., Marshall, F. H., et al. (2016) Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength, J. Med. Chem., 59, 6470-6479, https://doi.org/10.1021/acs.jmedchem.6b00653.

    Article  CAS  PubMed  Google Scholar 

  71. Rasmussen, S. G. F., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., et al. (2011) Crystal structure of the β2 adrenergic receptor–Gs protein complex, Nature, 477, 549-555, https://doi.org/10.1038/nature10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou, Q., Yang, D., Wu, M., Guo, Y., Guo, W., Zhong, L., Cai, X., Dai, A., Jang, W., Shakhnovich, E. I., et al. (2019) Common activation mechanism of class A GPCRs, Elife, 8, e50279, https://doi.org/10.7554/eLife.50279.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rucktooa, P., Cheng, R. K. Y., Segala, E., Geng, T., Errey, J. C., Brown, G. A., Cooke, R. M., Marshall, F. H., and Doré, A. S. (2018) Towards high throughput GPCR crystallography: in meso soaking of adenosine A2A receptor crystals, Sci. Rep., 8, 41, https://doi.org/10.1038/s41598-017-18570-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamamoto, M., Hirata, K., Yamashita, K., Hasegawa, K., Ueno, G., Ago, H., and Kumasaka, T. (2017) Protein microcrystallography using synchrotron radiation, IUCrJ, 4, 529-539, https://doi.org/10.1107/S2052252517008193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., and Hajdu, J. (2000) Potential for biomolecular imaging with femtosecond X-ray pulses, Nature, 406, 752-757, https://doi.org/10.1038/35021099.

    Article  CAS  PubMed  Google Scholar 

  76. Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U., et al. (2011) Femtosecond X-ray protein nanocrystallography, Nature, 470, 73-77, https://doi.org/10.1038/nature09750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gati, C., Bourenkov, G., Klinge, M., Rehders, D., Stellato, F., Oberthür, D., Yefanov, O., Sommer, B. P., Mogk, S., Duszenko, M., et al. (2014) Serial crystallography on in vivo grown microcrystals using synchrotron radiation, IUCrJ, 1, 87-94, https://doi.org/10.1107/S2052252513033939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roedig, P., Duman, R., Sanchez-Weatherby, J., Vartiainen, I., Burkhardt, A., Warmer, M., David, C., Wagner, A., and Meents, A. (2016) Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering, J. Appl. Crystallogr., 49, 968-975, https://doi.org/10.1107/S1600576716006348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang, C. Y., Olieric, V., Ma, P., Panepucci, E., Diederichs, K., Wang, M., and Caffrey, M. (2015) In meso in situ serial X-ray crystallography of soluble and membrane proteins, Acta Crystallogr. D Biol. Crystallogr., 71, 1238-1256, https://doi.org/10.1107/S1399004715005210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baxter, E. L., Aguila, L., Alonso-Mori, R., Barnes, C. O., Bonagura, C. A., Brehmer, W., Brunger, A. T., Calero, G., Caradoc-Davies, T. T., Chatterjee, R., et al. (2016) High-density grids for efficient data collection from multiple crystals, Acta Crystallogr. D. Struct. Biol., 72, 2-11, https://doi.org/10.1107/S2059798315020847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., Spence, J. C. H., Doak, R. B., Nelson, G., Fromme, P., et al. (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography, Nat. Commun., 5, 3309, https://doi.org/10.1038/ncomms4309.

    Article  CAS  PubMed  Google Scholar 

  82. Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D., Lebrette, H., Srinivas, V., Brewster, A. S., Michels-Clark, T., Clinger, J. A., et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers, Nat. Methods, 14, 443-449, https://doi.org/10.1038/nmeth.4195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miller, R. J. D. (2014) Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action, Science, 343, 1108-1116, https://doi.org/10.1126/science.1248488.

    Article  CAS  PubMed  Google Scholar 

  84. Coquelle, N., Brewster, A. S., Kapp, U., Shilova, A., Weinhausen, B., Burghammer, M., and Colletier, J. P. (2015) Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams, Acta Crystallogr. D Biol. Crystallogr., 71, 1184-1196, https://doi.org/10.1107/S1399004715004514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ke, T. W., Brewster, A. S., Yu, S. X., Ushizima, D., Yang, C., and Sauter, N. K. (2018) A convolutional neural network-based screening tool for X-ray serial crystallography, J. Synchrotron Radiat., 25, 655-670, https://doi.org/10.1107/S1600577518004873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zaefferer, S. (2000) New developments of computer-aided crystallographic analysis in transmission electron microscopy, J. Appl. Crystallogr., 33, 10-25, https://doi.org/10.1107/S0021889899010894.

    Article  CAS  Google Scholar 

  87. Winter, G., Waterman, D. G., Parkhurst, J. M., Brewster, A. S., Gildea, R. J., Gerstel, M., Fuentes-Montero, L., Vollmar, M., Michels-Clark, T., Young, I. D., et al. (2018) DIALS: implementation and evaluation of a new integration package, Acta Crystallogr. D Struct. Biol., 74, 85-97, https://doi.org/10.1107/S2059798317017235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kabsch, W. (2014) Processing of X-ray snapshots from crystals in random orientations, Acta Crystallogr. D Biol. Crystallogr., 70, 2204-2216, https://doi.org/10.1107/S1399004714013534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sauter, N. K., Hattne, J., Grosse-Kunstleve, R. W., and Echols, N. (2013) New Python-based methods for data processing, Acta Crystallogr. D Biol. Crystallogr., 69, 1274-1282, https://doi.org/10.1107/S0907444913000863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., and Chapman, H. N. (2012) CrystFEL: a software suite for snapshot serial crystallography, J. Appl. Crystallogr., 45, 335-341, https://doi.org/10.1107/S0021889812002312.

    Article  CAS  Google Scholar 

  91. Ginn, H. M., Evans, G., Sauter, N. K., and Stuart, D. I. (2016) On the release of cppxfel for processing X-ray free-electron laser images, J. Appl. Crystallogr., 49, 1065-1072, https://doi.org/10.1107/S1600576716006981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., Nelson, G., Weierstall, U., Katritch, V., Barty, A., et al. (2013) Serial femtosecond crystallography of G protein-coupled receptors, Science, 342, 1521-1524, https://doi.org/10.1126/science.1244142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T. A., Yefanov, O., Han, G. W., et al. (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser, Nature, 523, 561-567, https://doi.org/10.1038/nature14656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cheng, Y., Grigorieff, N., Penczek, P. A., and Walz, T. (2015) A primer to single-particle cryo-electron microscopy, Cell, 161, 438-449, https://doi.org/10.1016/j.cell.2015.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kühlbrandt, W. (2014) Biochemistry. The resolution revolution, Science, 343, 1443-1444, https://doi.org/10.1126/science.1251652.

    Article  PubMed  Google Scholar 

  96. Nakane, T., Kotecha, A., Sente, A., McMullan, G., Masiulis, S., Brown, P. M. G. E., Grigoras, I. T., Malinauskaite, L., Malinauskas, T., Miehling, J., et al. (2020) Single-particle cryo-EM at atomic resolution, Nature, 587, 152-156, https://doi.org/10.1038/s41586-020-2829-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Russo, C. J., and Passmore, L. A. (2014) Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy, Science, 346, 1377-1380, https://doi.org/10.1016/j.jsb.2015.11.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Punjani, A., Rubinstein, J. L., Fleet, D. J., and Brubaker, M. A. (2017) CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination, Nat. Methods, 14, 290-296, https://doi.org/10.1038/nmeth.4169.

    Article  CAS  PubMed  Google Scholar 

  99. Jeong, E., Kim, Y., Jeong, J., and Cho, Y. (2021) Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5, Nat. Commun., 12, 6805, https://doi.org/10.1038/s41467-021-27147-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kato, T., Makino, F., Nakane, T., Terahara, N., Kaneko, T., Shimizu, Y., Motoki, S., Ishikawa, I., Yonekura, K., and Namba, K. (2019) CryoTEM with a cold field emission gun that moves structural biology into a new stage, Microsc. Microanal., 25, 998-999, https://doi.org/10.1017/S1431927619005725.

    Article  Google Scholar 

  101. Peet, M. J., Henderson, R., and Russo, C. J. (2019) The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules, Ultramicroscopy, 203, 125-131, https://doi.org/10.1016/j.ultramic.2019.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Naydenova, K., McMullan, G., Peet, M. J., Lee, Y., Edwards, P. C., Chen, S., Leahy, E., Scotcher, S., Henderson, R., and Russo, C. J. (2019) CryoEM at 100 keV: a demonstration and prospects, IUCrJ, 6, 1086-1098, https://doi.org/10.1107/S2052252519012612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Krivanek, O. L., Corbin, G. J., Dellby, N., Elston, B. F., Keyse, R. J., Murfitt, M. F., Own, C. S., Szilagyi, Z. S., and Woodruff, J. W. (2008) An electron microscope for the aberration-corrected era, Ultramicroscopy, 108, 179-195, https://doi.org/10.1016/j.ultramic.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  104. Yip, K. M., Fischer, N., Paknia, E., Chari, A., and Stark, H. (2020) Atomic-resolution protein structure determination by cryo-EM, Nature, 587, 157-161, https://doi.org/10.1038/s41586-020-2833-4.

    Article  CAS  PubMed  Google Scholar 

  105. Rose, H. (2004) Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses, Nucl. Instrum. Methods Phys. Res. A, 519, 12-27, https://doi.org/10.1017/S1431927603011164.

    Article  CAS  Google Scholar 

  106. Guo, H., Franken, E., Deng, Y., Benlekbir, S., Singla Lezcano, G., Janssen, B., Yu, L., Ripstein, Z. A., Tan, Y. Z., and Rubinstein, J. L. (2020) Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution, IUCrJ, 7, 860-869, https://doi.org/10.1107/S205225252000929X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pándy-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsøe, K., Hauser, A. S., Bojarski, A. J., and Gloriam, D. E. (2018) GPCRdb in 2018: adding GPCR structure models and ligands, Nucleic Acids Res., 46, D440-D446, https://doi.org/10.1093/nar/gkx1109.

    Article  CAS  PubMed  Google Scholar 

  108. Zhuang, Y., Xu, P., Mao, C., Wang, L., Krumm, B., Zhou, X. E., Huang, S., Liu, H., Cheng, X., Huang, X.-P., et al. (2021) Structural insights into the human D1 and D2 dopamine receptor signaling complexes, Cell, 184, 931-942.e18, https://doi.org/10.1016/j.cell.2021.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liang, Y.-L., Khoshouei, M., Glukhova, A., Furness, S. G. B., Zhao, P., Clydesdale, L., Koole, C., Truong, T. T., Thal, D. M., Lei, S., et al. (2018) Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex, Nature, 555, 121-125, https://doi.org/10.1038/nature25773.

    Article  CAS  PubMed  Google Scholar 

  110. Liang, Y.-L., Belousoff, M. J., Zhao, P., Koole, C., Fletcher, M. M., Truong, T. T., Julita, V., Christopoulos, G., Xu, H. E., Zhang, Y., et al. (2020) Toward a structural understanding of class B GPCR peptide binding and activation, Mol. Cell, 77, 656-668.e5, https://doi.org/10.1016/j.molcel.2020.01.012.

    Article  CAS  PubMed  Google Scholar 

  111. Huang, S., Xu, P., Shen, D.-D., Simon, I. A., Mao, C., Tan, Y., Zhang, H., Harpsøe, K., Li, H., Zhang, Y., et al. (2022) GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors, Mol. Cell, 82, 2681-2695.e6, https://doi.org/10.1016/j.molcel.2022.05.031.

    Article  CAS  PubMed  Google Scholar 

  112. Yang, F., Mao, C., Guo, L., Lin, J., Ming, Q., Xiao, P., Wu, X., Shen, Q., Guo, S., Shen, D.-D., et al. (2020) Structural basis of GPBAR activation and bile acid recognition, Nature, 587, 499-504, https://doi.org/10.1038/s41586-020-2569-1.

    Article  CAS  PubMed  Google Scholar 

  113. Koning, R. I., Vader, H., van Nugteren, M., Grocutt, P. A., Yang, W., Renault, L. L. R., Koster, A. J., Kamp, A. C. F., and Schwertner, M. (2022) Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection, Nat. Commun., 13, 2985, https://doi.org/10.1038/s41467-022-30562-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, X., Johnson, R. M., Drulyte, I., Yu, L., Kotecha, A., Danev, R., Wootten, D., Sexton, P. M., and Belousoff, M. J. (2021) Evolving cryo-EM structural approaches for GPCR drug discovery, Structure, 29, 963-974.e6, https://doi.org/10.1016/j.str.2021.04.008.

    Article  CAS  PubMed  Google Scholar 

  115. Cheng, A., Tan, Y. Z., Dandey, V. P., Potter, C. S., and Carragher, B. (2016) Strategies for automated CryoEM data collection using direct detectors, Methods Enzymol., 579, 87-102, https://doi.org/10.1016/bs.mie.2016.04.008.

    Article  CAS  PubMed  Google Scholar 

  116. Wang, H.-W., and Wang, J.-W. (2017) How cryo-electron microscopy and X-ray crystallography complement each other, Protein Sci., 26, 32-39, https://doi.org/10.1002/pro.3022.

    Article  CAS  PubMed  Google Scholar 

  117. Barros-Álvarez, X., Nwokonko, R. M., Vizurraga, A., Matzov, D., He, F., Papasergi-Scott, M. M., Robertson, M. J., Panova, O., Yardeni, E. H., Seven, A. B., et al. (2022) The tethered peptide activation mechanism of adhesion GPCRs, Nature, 604, 757-762, https://doi.org/10.1038/s41586-022-04575-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ye, F., Wong, T.-S., Chen, G., Zhang, Z., Zhang, B., Gan, S., Gao, W., Li, J., Wu, Z., Pan, X., et al. (2022) Cryo-EM structure of G-protein-coupled receptor GPR17 in complex with inhibitory G protein, MedComm, 3, e159, https://doi.org/10.1002/mco2.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weissenberger, G., Henderikx, R. J. M., and Peters, P. J. (2021) Understanding the invisible hands of sample preparation for cryo-EM, Nat. Methods, 18, 463-471, https://doi.org/10.1038/s41592-021-01130-6.

    Article  CAS  PubMed  Google Scholar 

  120. Sgro, G. G., and Costa, T. R. D. (2018) Cryo-EM grid preparation of membrane protein samples for single particle analysis, Front Mol Biosci., 5, 74, https://doi.org/10.3389/fmolb.2018.00074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, S. (2022) Detergents and alternatives in cryo-EM studies of membrane proteins, Acta Biochim. Biophys. Sin., 54, 1049-1056, https://doi.org/10.3724/abbs.2022088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kampjut, D., Steiner, J., and Sazanov, L. A. (2021) Cryo-EM grid optimization for membrane proteins, iScience, 24, 102139, https://doi.org/10.1016/j.isci.2021.102139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, M., Gui, M., Wang, Z.-F., Gorgulla, C., Yu, J. J., Wu, H., Sun, Z.-Y. J., Klenk, C., Merklinger, L., Morstein, L., et al. (2021) Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs, Nat. Struct. Mol. Biol., 28, 258-267, https://doi.org/10.1038/s41594-020-00554-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yin, J., Chen, K.-Y. M., Clark, M. J., Hijazi, M., Kumari, P., Bai, X.-C., Sunahara, R. K., Barth, P., and Rosenbaum, D. M. (2020) Structure of a D2 dopamine receptor G-protein complex in a lipid membrane, Nature, 584, 125-129, https://doi.org/10.1038/s41586-020-2379-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee, Y., Warne, T., Nehmé, R., Pandey, S., Dwivedi-Agnihotri, H., Chaturvedi, M., Edwards, P. C., García-Nafría, J., Leslie, A. G. W., Shukla, A. K., et al. (2020) Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor, Nature, 583, 862-866, https://doi.org/10.1038/s41586-020-2419-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Staus, D. P., Hu, H., Robertson, M. J., Kleinhenz, A. L. W., Wingler, L. M., Capel, W. D., Latorraca, N. R., Lefkowitz, R. J., and Skiniotis, G. (2020) Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc, Nature, 579, 297-302, https://doi.org/10.1038/s41586-020-1954-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ripstein, Z. A., and Rubinstein, J. L. (2016) Processing of cryo-EM movie data, Methods Enzymol., 579, 103-124, https://doi.org/10.1016/bs.mie.2016.04.009.

    Article  CAS  PubMed  Google Scholar 

  128. Scheres, S. H. W. (2016) Processing of structurally heterogeneous cryo-EM data in RELION, Methods Enzymol., 579, 125-157, https://doi.org/10.1016/bs.mie.2016.04.012.

    Article  CAS  PubMed  Google Scholar 

  129. Penczek, P. A. (2010) Image restoration in cryo-electron microscopy, Methods Enzymol., 482, 35-72, https://doi.org/10.1016/S0076-6879(10)82002-6.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rosenthal, P. B., and Henderson, R. (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy, J. Mol. Biol., 333, 721-745, https://doi.org/10.1016/j.jmb.2003.07.013.

    Article  CAS  PubMed  Google Scholar 

  131. Gusach, A., García-Nafría, J., and Tate, C. G. (2023) New insights into GPCR coupling and dimerisation from cryo-EM structures, Curr. Opin. Struct. Biol., 80, 102574, https://doi.org/10.1016/j.sbi.2023.102574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yin, W., Li, Z., Jin, M., Yin, Y.-L., de Waal, P. W., Pal, K., Yin, Y., Gao, X., He, Y., Gao, J., et al. (2019) A complex structure of arrestin-2 bound to a G protein-coupled receptor, Cell Res., 29, 971-983, https://doi.org/10.1038/s41422-019-0256-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, Q., Plasencia, M., Li, Z., Mukherjee, S., Patra, D., Chen, C.-L., Klose, T., Yao, X.-Q., Kossiakoff, A. A., Chang, L., et al. (2021) Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1, Nature, 595, 600-605, https://doi.org/10.1038/s41586-021-03721-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Duan, J., Liu, H., Ji, Y., Yuan, Q., Li, X., Wu, K., Gao, T., Zhu, S., Yin, W., Jiang, Y., et al. (2022) Structure of a G protein-coupled receptor with GRK2 and a biased ligand, bioRxiv, https://doi.org/10.1101/2022.10.19.512855.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Thomsen, A. R. B., Plouffe, B., Cahill, T. J., 3rd, Shukla, A. K., Tarrasch, J. T., Dosey, A. M., Kahsai, A. W., Strachan, R. T., Pani, B., Mahoney, J. P., et al. (2016) GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling, Cell, 166, 907-919, https://doi.org/10.1016/j.cell.2016.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, K., Wu, H., Hoppe, N., Manglik, A., and Cheng, Y. (2022) Fusion protein strategies for cryo-EM study of G protein-coupled receptors, Nat. Commun., 13, 4366, https://doi.org/10.1038/s41467-022-32125-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Robertson, M. J., Papasergi-Scott, M. M., He, F., Seven, A. B., Meyerowitz, J. G., Panova, O., Peroto, M. C., Che, T., and Skiniotis, G. (2022) Structure determination of inactive-state GPCRs with a universal nanobody, Nat. Struct. Mol. Biol., 29, 1188-1195, https://doi.org/10.1038/s41594-022-00859-8.

    Article  CAS  PubMed  Google Scholar 

  138. Liang, Y.-L., Khoshouei, M., Radjainia, M., Zhang, Y., Glukhova, A., Tarrasch, J., Thal, D. M., Furness, S. G. B., Christopoulos, G., Coudrat, T., et al. (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex, Nature, 546, 118-123, https://doi.org/10.1038/nature22327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, Y., Sun, B., Feng, D., Hu, H., Chu, M., Qu, Q., Tarrasch, J. T., Li, S., Sun Kobilka, T., Kobilka, B. K., et al. (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein, Nature, 546, 248-253, https://doi.org/10.1038/nature22394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fan, X., Wang, J., Zhang, X., Yang, Z., Zhang, J.-C., Zhao, L., Peng, H.-L., Lei, J., and Wang, H.-W. (2019) Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution, Nat. Commun., 10, 2386, https://doi.org/10.1038/s41467-019-10368-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Duan, J., Xu, P., Luan, X., Ji, Y., He, X., Song, N., Yuan, Q., Jin, Y., Cheng, X., Jiang, H., et al. (2022) Hormone- and antibody-mediated activation of the thyrotropin receptor, Nature, 609, 854-859, https://doi.org/10.1038/s41586-022-05173-3.

    Article  CAS  PubMed  Google Scholar 

  142. Josephs, T. M., Belousoff, M. J., Liang, Y.-L., Piper, S. J., Cao, J., Garama, D. J., Leach, K., Gregory, K. J., Christopoulos, A., Hay, D. L., et al. (2021) Structure and dynamics of the CGRP receptor in apo and peptide-bound forms, Science, 372, https://doi.org/10.1126/science.abf7258.

    Article  PubMed  Google Scholar 

  143. Shaik, M. M., Peng, H., Lu, J., Rits-Volloch, S., Xu, C., Liao, M., and Chen, B. (2019) Structural basis of coreceptor recognition by HIV-1 envelope spike, Nature, 565, 318-323, https://doi.org/10.1038/s41586-018-0804-9.

    Article  CAS  PubMed  Google Scholar 

  144. Yue, Y., Liu, L., Wu, L.-J., Wu, Y., Wang, L., Li, F., Liu, J., Han, G.-W., Chen, B., Lin, X., et al. (2022) Structural insight into apelin receptor G protein stoichiometry, Nat. Struct. Mol. Biol., 29, 688-697, https://doi.org/10.1038/s41594-022-00797-5.

    Article  CAS  PubMed  Google Scholar 

  145. Velazhahan, V., Ma, N., Pándy-Szekeres, G., Kooistra, A. J., Lee, Y., Gloriam, D. E., Vaidehi, N., and Tate, C. G. (2020) Structure of the class D GPCR Ste2 dimer coupled to two G proteins, Nature, 589, 148-153, https://doi.org/10.1038/s41586-020-2994-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mobbs, J. I., Belousoff, M. J., Harikumar, K. G., Piper, S. J., Xu, X., Furness, S. G. B., Venugopal, H., Christopoulos, A., Danev, R., Wootten, D., Thal, D. M., et al. (2021) Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity, PLoS Biol., 19, e3001295, https://doi.org/10.1371/journal.pbio.3001295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Van Drie, J. H., and Tong, L. (2020) Cryo-EM as a powerful tool for drug discovery, Bioorg. Med. Chem. Lett., 30, 127524, https://doi.org/10.1016/j.bmcl.2020.127524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-74-00024, https://rscf.ru/project/22-74-00024/ [in Russian]; section “Preparation of GPCRs for crystallization”; project no. 22-74-10036, https://rscf.ru/project/22-74-10036/ [in Russian]; “Cryo-electron microscopy” section) and by the Ministry of Science and Higher Education (grant agreement 075-03-2024-117, project FSMG-2024-0012; “GPCR crystallization” section; grant agreement 075-15-2021-1354, MX methods in GPCR studies).

Author information

Authors and Affiliations

Authors

Contributions

A.M. and N.S. wrote the Introduction; V.P., A.B., P.Kh., and V.B. wrote the “Protein crystallography” section; A.L. and D.D. wrote the Cryo-EM section; A.L., P.Kh., V.P., D.D., A.Kh., and A.B. prepared the figures; A.M., A.L., O.M. edited the manuscript; P.Kh., A.L., A.M., and V.B. proposed the concept of the article.

Corresponding authors

Correspondence to Alexey V. Mishin or Valentin I. Borshchevsky.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorn, P.A., Luginina, A.P., Pospelov, V.A. et al. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: A Structural Biology Perspective. Biochemistry Moscow 89, 747–764 (2024). https://doi.org/10.1134/S0006297924040138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924040138

Keywords

Navigation