Skip to main content
Log in

Histone modifications on the promoters of human OCT4 and NANOG genes at the onset of neural differentiation of NT2/D1 cells

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Transcription factors OCT4 and NANOG are main constituents of a functional network that controls proliferation and pluripotency maintenance of stem cells as well as early lineage decisions. We investigated expression profiles of OCT4 and NANOG during the early phases of neural differentiation using NT2/D1 cells induced by retinoic acid as an in vitro model system of human neurogenesis. We demonstrated decrease in OCT4 and NANOG mRNA and protein levels following exposure to retinoic acid. Next, by employing chromatin immunoprecipitation, we investigated profiles of selected H3 and H2B histone marks deposited on the promoters of the OCT4 and NANOG genes. We found decline in H3K4me3, H2BK5ac, and H2BK120ac on both promoters, which paralleled the decrease in OCT4 and NANOG expression. Moreover, we found that the H2BK16ac mark is differentially enriched on these two promoters, pointing to differences in epigenetic regulation of OCT4 and NANOG gene expression. Finally, based on our data, we suggest that the early response of pluripotency genes OCT4 and NANOG to the differentiation-inducing stimuli is mediated by dynamic changes in chromatin marks, while DNA methylation is acquired in the later stages of neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESCs:

embryonic stem cells

PTMs:

posttranslational modifications

RA:

retinoic acid

References

  1. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells, Cell, 122, 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B., and Ng, H. H. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells, Nat. Genet., 38, 431–440.

    Article  CAS  PubMed  Google Scholar 

  3. Rosner, M. H., Vigano, M. A., Ozato, K., Timmons, P. M., Poirier, F., Rigby, P. W., and Staudt, L. M. (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo, Nature, 345, 686–692.

    Article  CAS  PubMed  Google Scholar 

  4. Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990) A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells, Cell, 60, 461–472.

    Article  CAS  PubMed  Google Scholar 

  5. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4, Cell, 95, 379–391.

    Article  CAS  PubMed  Google Scholar 

  6. Palmieri, S. L., Peter, W., Hess, H., and Scholer, H. R. (1994) Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation, Dev. Biol., 166, 259–267.

    Article  CAS  PubMed  Google Scholar 

  7. Hansis, C., Grifo, J. A., and Krey, L. C. (2000) Oct-4 expression in inner cell mass and trophectoderm of human blastocysts, Mol. Hum. Reprod., 6, 999–1004.

    Article  CAS  PubMed  Google Scholar 

  8. Goto, T., Adjaye, J., Rodeck, C. H., and Monk, M. (1999) Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis, Mol. Hum. Reprod., 5, 851–860.

    Article  CAS  PubMed  Google Scholar 

  9. Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomeli, H., Nagy, A., Mclaughlin, K. J., Scholer, H. R., and Tomilin, A. (2004) Oct4 is required for primordial germ cell survival, EMBO Rep., 5, 1078–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells, Cell, 113, 643–655.

    Article  CAS  PubMed  Google Scholar 

  11. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells, Cell, 113, 631–642.

    Article  CAS  PubMed  Google Scholar 

  12. Guo, G., Huss, M., Tong, G. Q., Wang, C., Li Sun, L., Clarke, N. D., and Robson, P. (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst, Dev. Cell, 18, 675–685.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Z., Oron, E., Nelson, B., Razis, S., and Ivanova, N. (2012) Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells, Cell Stem Cell, 10, 440–454.

    Article  CAS  PubMed  Google Scholar 

  14. Loh, K. M., and Lim, B. (2011) A precarious balance: pluripotency factors as lineage specifiers, Cell Stem Cell, 8, 363–369.

    Article  CAS  PubMed  Google Scholar 

  15. Costa, Y., Ding, J., Theunissen, T. W., Faiola, F., Hore, T. A., Shliaha, P. V., Fidalgo, M., Saunders, A., Lawrence, M., Dietmann, S., Das, S., Levasseur, D. N., Li, Z., Xu, M., Reik, W., Silva, J. C., and Wang, J. (2013) NANOG-dependent function of TET1 and TET2 in establishment of pluripotency, Nature, 495, 370–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding, J., Xu, H., Faiola, F., Ma’ayan, A., and Wang, J. (2012) Oct4 links multiple epigenetic pathways to the pluripotency network, Cell Res., 22, 155–167.

    Article  CAS  PubMed  Google Scholar 

  17. Ho, L., Jothi, R., Ronan, J. L., Cui, K., Zhao, K., and Crabtree, G. R. (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network, Proc. Natl. Acad. Sci. USA, 106, 5187–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang, J., Chan, Y. S., Loh, Y. H., Cai, J., Tong, G. Q., Lim, C. A., Robson, P., Zhong, S., and Ng, H. H. (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells, Nat. Cell Biol., 10, 353–360.

    Article  PubMed  Google Scholar 

  19. Marson, A., Levine, S. S., Cole, M. F., Frampton, G. M., Brambrink, T., Johnstone, S., Guenther, M. G., Johnston, W. K., Wernig, M., Newman, J., Calabrese, J. M., Dennis, L. M., Volkert, T. L., Gupta, S., Love, J., Hannett, N., Sharp, P. A., Bartel, D. P., Jaenisch, R., and Young, R. A. (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells, Cell, 134, 521–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D. N., Theunissen, T. W., and Orkin, S. H. (2006) A protein interaction network for pluripotency of embryonic stem cells, Nature, 444, 364–368.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, J., Chai, L., Fowles, T. C., Alipio, Z., Xu, D., Fink, L. M., Ward, D. C., and Ma, Y. (2008) Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells, Proc. Natl. Acad. Sci. USA, 105, 19756–19761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, Q., Chipperfield, H., Melton, D. A., and Wong, W. H. (2007) A gene regulatory network in mouse embryonic stem cells, Proc. Natl. Acad. Sci. USA, 104, 16438–16443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrews, P. W. (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro, Dev. Biol., 103, 285–293.

    Article  CAS  PubMed  Google Scholar 

  24. Andrews, P. W. (1988) Human teratocarcinomas, Biochim. Biophys. Acta, 948, 17–36.

    CAS  PubMed  Google Scholar 

  25. Hart, A. H., Hartley, L., Ibrahim, M., and Robb, L. (2004) Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human, Dev. Dyn., 230, 187–198.

    Article  CAS  PubMed  Google Scholar 

  26. Deb-Rinker, P., Ly, D., Jezierski, A., Sikorska, M., and Walker, P. R. (2005) Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation, J. Biol. Chem., 280, 6257–6260.

    Article  CAS  PubMed  Google Scholar 

  27. Olynik, B. M., and Rastegar, M. (2012) The genetic and epigenetic journey of embryonic stem cells into mature neural cells, Front. Genet., 3, 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carey, T. S., Choi, I., Wilson, C. A., Floer, M., and Knott, J. G. (2014) Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage, Stem Cells Dev., 23, 219–229.

    Article  CAS  PubMed  Google Scholar 

  29. Mojsin, M., Grujicic, N. K., Nikcevic, G., Krstic, A., Savic, T., and Stevanovic, M. (2006) Mapping of the RXRalpha binding elements involved in retinoic acid induced transcriptional activation of the human SOX3 gene, Neurosci. Res., 56, 409–418.

    Article  CAS  PubMed  Google Scholar 

  30. De Winter, J. C. F. (2013) Using the Student’s t-test with extremely small sample sizes, Pract. Assessment Res. Eval., 18.

    Google Scholar 

  31. Nardini, M., Gnesutta, N., Donati, G., Gatta, R., Forni, C., Fossati, A., Vonrhein, C., Moras, D., Romier, C., Bolognesi, M., and Mantovani, R. (2013) Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination, Cell, 152, 132–143.

    Article  CAS  PubMed  Google Scholar 

  32. Stevanovic, M. (2003) Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2, Mol. Biol. Rep., 30, 127–132.

    Article  CAS  PubMed  Google Scholar 

  33. Houldsworth, J., Heath, S. C., Bosl, G. J., Studer, L., and Chaganti, R. S. (2002) Expression profiling of lineage differentiation in pluripotential human embryonal carcinoma cells, Cell Growth Differ., 13, 257–264.

    CAS  PubMed  Google Scholar 

  34. Kalmar, T., Lim, C., Hayward, P., Munoz-Descalzo, S., Nichols, J., Garcia-Ojalvo, J., and Martinez Arias, A. (2009) Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells, PLoS Biol., 7, e1000149.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Torres-Padilla, M. E., and Chambers, I. (2014) Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage, Development, 141, 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  36. Chadalavada, R. S., Korkola, J. E., Houldsworth, J., Olshen, A. B., Bosl, G. J., Studer, L., and Chaganti, R. S. (2007) Constitutive gene expression predisposes morphogen-mediated cell fate responses of NT2/D1 and 27X-1 human embryonal carcinoma cells, Stem Cells, 25, 771–778.

    Article  CAS  PubMed  Google Scholar 

  37. Busskamp, V., Lewis, N. E., Guye, P., Ng, A. H., Shipman, S. L., Byrne, S. M., Sanjana, N. E., Murn, J., Li, Y., Li, S., Stadler, M., Weiss, R., and Church, G. M. (2014) Rapid neurogenesis through transcriptional activation in human stem cells, Mol. Syst. Biol., 10, 760.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy, J., Xu, W., Yang, N., Danko, T., Chen, L., Wernig, M., and Sudhof, T. C. (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells, Neuron, 78, 785–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cruickshank, M. N., Besant, P., and Ulgiati, D. (2010) The impact of histone post-translational modifications on developmental gene regulation, Amino Acids, 39, 1087–1105.

    Article  CAS  PubMed  Google Scholar 

  40. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, 125, 315–326.

    Article  CAS  PubMed  Google Scholar 

  41. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., and Bernstein, B. E. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells, Nature, 448, 553–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Favaedi, R., Shahhoseini, M., and Akhoond, M. R. (2012) Comparative epigenetic analysis of Oct4 regulatory region in RA-induced differentiated NT2 cells under adherent and nonadherent culture conditions, Mol. Cell. Biochem., 363, 129–134.

    Article  CAS  PubMed  Google Scholar 

  43. Shahhoseini, M., Taei, A., Mehrjardi, N. Z., Salekdeh, G. H., and Baharvand, H. (2010) Epigenetic analysis of human embryonic carcinoma cells during retinoic acid-induced neural differentiation, Biochem. Cell Biol., 88, 527–538.

    Article  CAS  PubMed  Google Scholar 

  44. Kouzarides, T. (2007) Chromatin modifications and their function, Cell, 128, 693–705.

    Article  CAS  PubMed  Google Scholar 

  45. Cedar, H., and Bergman, Y. (2009) Linking DNA methylation and histone modification: patterns and paradigms, Nat. Rev. Genet., 10, 295–304.

    Article  CAS  PubMed  Google Scholar 

  46. Rose, N. R., and Klose, R. J. (2014) Understanding the relationship between DNA methylation and histone lysine methylation, Biochim. Biophys. Acta, 1839, 1362–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mojsin.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 6, pp. 944-953.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topalovic, V., Schwirtlich, M., Stevanovic, M. et al. Histone modifications on the promoters of human OCT4 and NANOG genes at the onset of neural differentiation of NT2/D1 cells. Biochemistry Moscow 82, 715–722 (2017). https://doi.org/10.1134/S0006297917060086

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917060086

Keywords

Navigation