Skip to main content
Log in

Functioning of yeast Pma1 H+-ATPase under changing charge: Role of Asp739 and Arg811 residues

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The plasma membrane Pma1 H+-ATPase of the yeast Saccharomyces cerevisiae contains conserved residue Asp739 located at the interface of transmembrane segment M6 and the cytosol. Its replacement by Asn or Val (Petrov et al. (2000) J. Biol. Chem., 275, 15709-15716) or by Ala (Miranda et al. (2011) Biochim. Biophys. Acta, 1808, 1781-1789) caused complete blockage of biogenesis of the enzyme, which did not reach secretory vesicles. It was proposed that a strong ionic bond (salt bridge) could be formed between this residue and positively charged residue(s) in close proximity, and the replacement D739A disrupted this bond. Based on a 3D homology model of the enzyme, it was suggested that the conserved Arg811 located in close proximity to Asp739 could be such stabilizing residue. To test this suggestion, single mutants with substituted Asp739 (D739V, D739N, D739A, and D739R) and Arg811 (R811L, R811M, R811A, and R811D) as well as double mutants carrying charge-neutralizing (D739A/R811A) or charge-swapping (D739R/R811D) substitutions were used. Expression of ATPases with single substitutions R811A and R811D were 38-63%, and their activities were 29-30% of the wild type level; ATP hydrolysis and H+ transport in these enzymes were essentially uncoupled. For the other substitutions including the double mutations, the biogenesis of the enzyme was practically blocked. These data confirm the important role of Asp739 and Arg811 residues for the biogenesis and function of the enzyme, suggesting their importance for defining H+ transport determinants but ruling out, however, the existence of a strong ionic bond (salt bridge) between these two residues and/or importance of such bridge for structure–function relationships in Pma1 H+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serrano, R., Kielland-Brandt, M. C., and Fink, G. R. (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+,K+)K+and Ca2+ATPases, Nature, 319, 689–693.

    Article  CAS  PubMed  Google Scholar 

  2. Lutsenko, S., and Kaplan, J. H. (1995) Organization of Ptype ATPases: significance of structural diversity, Biochemistry, 34, 15607–15613.

    Article  CAS  PubMed  Google Scholar 

  3. Axelsen, K. B., and Palmgren, M. G. (1998) Evolution of substrate specificities in the P-type ATPase superfamily, J. Mol. Evol., 46, 84–101.

    Article  CAS  PubMed  Google Scholar 

  4. Petrov, V. V., and Okorokov, L. A. (1992) Energization of yeast plasmalemma is necessary for activation of its ase by glucose, Biokhimiya (Moscow), 57, 1705–1711.

    CAS  Google Scholar 

  5. Goffeau, A., and Slayman, C. W. (1981) The protontranslocating ATPase of the fungal plasma membrane, Biochim. Biophys. Acta, 639, 197–223.

    Article  CAS  PubMed  Google Scholar 

  6. Andersen, J. P., and Vilsen, B. (1994) Amino acids Asn796 and Thr799 of the Ca2+-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites, J. Biol. Chem., 269, 15931–15936.

    CAS  PubMed  Google Scholar 

  7. Rice, W. J., and MacLennan, D. H. (1996) Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a), J. Biol. Chem., 271, 31412–31419.

    CAS  Google Scholar 

  8. Zhang, Z., Lewis, D., Strock, C., Inesi, G., Nakasako, M., Nomura, H., and Toyoshima, C. (2000) Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase, Biochemistry, 39, 8758–8767.

    Article  CAS  PubMed  Google Scholar 

  9. Vilsen, B., and Andersen, J. P. (1998) Mutation to the glutamate in the fourth membrane segment of Na+,K+ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms, Biochemistry, 37, 10961–10971.

    Article  CAS  PubMed  Google Scholar 

  10. Jewell-Motz, E. A., and Lingrel, J. B. (1993) Site-directed mutagenesis of the Na,K-ATPase: consequences of substitutions of negatively-charged amino acids localized in the transmembrane domains, Biochemistry, 32, 13523–13530.

    Article  CAS  PubMed  Google Scholar 

  11. Kuntzweiler, T. A., Arguello, J. M., and Lingrel, J. B. (1996) Asp804 and Asp808 in the transmembrane domain of the Na,K-ATPase a subunit are cation coordinating residues, J. Biol. Chem., 271, 29682–29687.

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen, J. M., Pedersen, P. A., Karlish, S. J. D., and Jorgensen, P. L. (1998) Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase, Biochemistry, 37, 1961–1968.

    Article  CAS  PubMed  Google Scholar 

  13. Swarts, H. G., Klaassen, C. H., De Boer, M., Fransen, J. A., and De Pont, J. J. (1996) Role of negatively charged residues in the fifth and sixth transmembrane domains of the catalytic subunit of gastric H+,K+-ATPase, J. Biol. Chem., 271, 29764–29772.

    Article  CAS  PubMed  Google Scholar 

  14. Hermsen, H. P., Koenderink, J. B., Swarts, H. G., and De Pont, J. J. (1998) The negative charge of glutamic acid-795 is essential for gastric H+,K+-ATPase activity, Biochemistry, 39, 1330–1337.

    Article  Google Scholar 

  15. Hermsen, H. P., Swarts, H. G., Koenderink, J. B., and De Pont, J. J. (2000) The carbonyl group of glutamic acid-820 in the gastric H+,K+-ATPase alpha-subunit is essential for K+ activation of the enzyme activity, Biochem. J., 331, 465472.

    Google Scholar 

  16. Swarts, H. G. P., Koenderink, J. B., Willems, P. H., Krieger, E., and De Pont, J. J. (2005) Asn792 participates in the hydrogen bond network around the K+-binding pocket of gastric H,K-ATPase, J. Biol. Chem., 280, 1148811494.

    Google Scholar 

  17. Asano, S., Io, T., Kimura, T., Sakamoto, S., and Takeguchi, N. (2001) Alanine-scanning mutagenesis of the sixth transmembrane segment of gastric H+,K+-ATPase alpha-subunit, J. Biol. Chem., 276, 31265–31273.

    Article  CAS  PubMed  Google Scholar 

  18. Asano, S., Morii, M., and Takeguchi, N. (2004) Molecular and cellular regulation of the gastric pump, Biol. Pharm. Bull., 27, 1–12.

    Article  CAS  PubMed  Google Scholar 

  19. Buch-Pedersen, M. J., Venema, K., Serrano, R., and Palmgren, M. G. (2000) Abolishment of proton pumping and accumulation in the E1P conformational state of a plant plasma membrane H+-ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6, J. Biol. Chem., 275, 39167–39173.

    Article  CAS  PubMed  Google Scholar 

  20. Buch-Pedersen, M. J., and Palmgren, M. G. (2003) Conserved Asp684 in transmembrane segment M6 of the plant plasma membrane P-type proton pump AHA2 is molecular determinant of proton translocation, J. Biol. Chem., 278, 17845–17851.

    Article  CAS  PubMed  Google Scholar 

  21. Wei, Y., Chen, J., Rosas, G., Tompkins, D. A., Holt, P. A., and Rao, R. (2000) Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport, J. Biol. Chem., 275, 23927–23932.

    Article  CAS  PubMed  Google Scholar 

  22. Mandal, D., Woolf, T. B., and Rao, R. (2000) Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue Gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport, J. Biol. Chem., 275, 23933–23938.

    CAS  PubMed  Google Scholar 

  23. Ambesi, A., Pan, R. L., and Slayman, C. W. (1996) Alanine-scanning mutagenesis along membrane segment 4 of the yeast plasma membrane H+-ATPase. Effects on structure and function, J. Biol. Chem., 271, 22999–23005.

    Article  CAS  PubMed  Google Scholar 

  24. Dutra, M. B., Ambesi, A., and Slayman, C. W. (1998) Structure-function relationships in membrane segment 5 of the yeast Pma1 H+-ATPase, J. Biol. Chem., 273, 17411–17417.

    Article  CAS  PubMed  Google Scholar 

  25. Petrov, V. V., Padmanabha, K. P., Nakamoto, R. K., Allen, K. E., and Slayman, C. W. (2000) Functional role of charged residues in the transmembrane segments of the yeast plasma membrane H+-ATPase, J. Biol. Chem., 275, 15709–15716.

    Article  CAS  PubMed  Google Scholar 

  26. Guerra, G., Petrov, V. V., Allen, K. E., Miranda, M., Pardo, J. P., and Slayman, C. W. (2007) Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H+-ATPase, Biochim. Biophys. Acta, 1768, 2383–2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miranda-Arango, M., Pardo, J. P., and Petrov, V. V. (2009) Role of transmembrane segment M6 in the biogenesis and function of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 26, 866–868.

    Google Scholar 

  28. Petrov, V. V. (2009) Heat shock affects functioning of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 26, 857–858.

    Google Scholar 

  29. Petrov, V. V. (2010) Point mutations in Pma1 H+-ATPase of Saccharomyces cerevisiae: influence on its expression and activity, Biochemistry (Moscow), 75, 1055–1064.

    Article  CAS  Google Scholar 

  30. Miranda, M., Pardo, J. P., and Petrov, V. V. (2011) Structure-function relationships in membrane segment 6 of the yeast plasma membrane Pma1 H+-ATPase, Biochim. Biophys. Acta, 1808, 1781–1789.

    Article  CAS  PubMed  Google Scholar 

  31. Petrov, V. V. (2011) Role of M5-M6 loop in the biogenesis and function of the yeast Pma1 H+-ATPase, J. Biomol. Struct. Dyn., 28, 1024–1025.

    Google Scholar 

  32. Petrov, V. V. (2015) Point mutations in the extracytosolic loop between transmembrane segments M5 and M6 of the yeast Pma1 H+-ATPase: alanine-scanning mutagenesis, J. Biomol. Struct. Dyn., 33, 70–84.

    Article  CAS  PubMed  Google Scholar 

  33. Petrov, V. V. (2015) Role of loop L5-6 connecting transmembrane segments M5 and M6 in biogenesis and functioning of yeast Pma1 H+-ATPase, Biochemistry (Moscow), 80, 31–44.

    Article  CAS  Google Scholar 

  34. Toyosima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution, Nature, 405, 647–655.

    Article  Google Scholar 

  35. Toyosima, C., and Nomura, H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium, Nature, 418, 605–611.

    Article  Google Scholar 

  36. Takahashi, M., Kondou, Y., and Toyoshima, C. (2007) Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors, Proc. Natl. Acad. Sci. USA, 104, 5800–5805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toyoshima, C., Norimatsu, Y., Iwasawa, S., Tsuda, T., and Ogawa, H. (2007) How processing of aspartyl phosphate is coupled to lumenal gating of the ion pathway in the calcium pump, Proc. Natl. Acad. Sci. USA, 104, 19831–19836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toyoshima, C. (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum, Arch. Biochem. Biophys., 476, 3–11.

    Article  CAS  PubMed  Google Scholar 

  39. Toyoshima, C., Iwasawa, S., Ogawa, H., Hirata, A., Tsueda, J., and Inesi, G. (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state, Nature, 495, 260–264.

    Article  CAS  PubMed  Google Scholar 

  40. Morth, J. P., Pedersen, B. P., Toustrup-Jensen, M. S., Sorensen, T. L., Petersen, J., Andersen, J. P., Vilsen, B., and Nissen, P. (2007) Crystal structure of the sodiumpotassium pump, Nature, 450, 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  41. Shinoda, T., Ogawa, H., Cornelius, F., and Toyosima, C. (2009) Crystal structure of the sodium-potassium pump at 2.4 Å resolution, Nature, 459, 446–450.

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa, H., Shinoda, T., Cornelius, F., and Toyoshima, C. (2009) Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain, Proc. Natl. Acad. Sci. USA, 106, 13742–13747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nyblom, M., Poulsen, H., Gourdon, P., Reinhard, L., Andersson, M., Lindahl, E., Fedosova, N., and Nissen, P. (2013) Crystal structure of Na+, K+-ATPase in the Na+bound state, Science, 342, 123–127.

    CAS  PubMed  Google Scholar 

  44. Kanai, R., Ogawa, H., Vilsen, B., Cornelius, F., and Toyoshima, C. (2013) Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state, Nature, 502, 201206.

    Article  Google Scholar 

  45. Pedersen, B. P., Buch-Pedersen, M., Morth, J. J. P., Palmgren, M. G., and Nissen, P. (2007) Crystal structure of the plasma membrane proton pump, Nature, 450, 11111114.

    Article  Google Scholar 

  46. Gupta, S. S., DeWitt, N. D., Allen, K. E., and Slayman, C. W. (1998) Evidence for a salt bridge between transmembrane segments 5 and 6 of the yeast plasma-membrane H+ATPase, J. Biol. Chem., 273, 34328–34334.

    Article  CAS  PubMed  Google Scholar 

  47. Nakamoto, R. K., Rao, R., and Slayman, C. W. (1991) Expression of the yeast plasma membrane H+-ATPase in secretory vesicles. A new strategy for directed mutagenesis, J. Biol. Chem., 266, 7940–7949.

    CAS  PubMed  Google Scholar 

  48. Petrov, V. V., and Slayman, C. W. (1995) Site-directed mutagenesis of the yeast PMA1 H+-ATPase. Structural and functional role of cysteine residues, J. Biol. Chem., 270, 28535–28540.

    Article  CAS  PubMed  Google Scholar 

  49. Fabiato, A., and Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. (Paris), 75, 463–505.

    CAS  Google Scholar 

  50. Fiske, C. H., and Subbarow, Y. (1925) The colorimetric determination of phosphorus, J. Biol. Chem., 66, 375–400.

  51. Bensadoun, A., and Weinstein, D. (1976) Assay of proteins in the presence of interfering materials, Anal. Biochem., 70, 241–250.

    Article  CAS  PubMed  Google Scholar 

  52. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673–4680.

    CAS  PubMed  Google Scholar 

  53. Serrano, R. (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi, Biochim. Biophys. Acta, 947, 1–28.

    Article  CAS  PubMed  Google Scholar 

  54. Ambesi, A., Miranda, M., Petrov, V. V., and Slayman, C. W. (2000) Biogenesis and function of the yeast plasma-membrane H+-ATPase, J. Exp. Biol., 203, 156–160.

    Google Scholar 

  55. Ferreira, T., Mason, A. B., Pypaert, M., Allen, K. E., and Slayman, C. W. (2002) Quality control in the yeast secretory pathway: a misfolded PMA1 H+-ATPase reveals two checkpoints, J. Biol. Chem., 277, 21027–21040.

    Article  CAS  PubMed  Google Scholar 

  56. Mason, A. B., Allen, K. E., and Slayman, C. W. (2014) Cterminal truncations of the Saccharomyces cerevisiae PMA1 H+-ATPase have major impacts on protein conformation, trafficking, quality control, and function, Eukaryot. Cell, 13, 43–52.

    CAS  Google Scholar 

  57. Nakamoto, R. K., Verjovski-Almeida, S., Allen, K. E., Ambesi, A., Rao, R., and Slayman, C. W. (1998) Substitutions of aspartate 378 in the phosphorylation domain of the yeast PMA1 H+-ATPase disrupt protein folding and biogenesis, J. Biol. Chem., 273, 7338–7344.

    Article  CAS  PubMed  Google Scholar 

  58. Dougherty, D. A. (2006) Modern Physical Organic Chemistry, University Science Books, Sausalito, CA.

    Google Scholar 

  59. Bairagya, H. R., Mukhopadhyay, B. P., and Bera, A. K. (2011) Role of salt bridge dynamics in inter domain recognition of human IMPDH isoforms: insight to inhibitor topology for isoform II, J. Biomol. Struct. Dyn., 29, 441–462.

    Article  CAS  PubMed  Google Scholar 

  60. Bairagya, H. R., and Mukhopadhyay, B. P. (2013) An insight to the dynamics of conserved water-mediated salt bridge interaction and interdomain recognition in hIMPDH isoforms, J. Biomol. Struct. Dyn., 31, 788–808.

    Article  CAS  PubMed  Google Scholar 

  61. Morozov, V. N., and Kallenbach, N. R. (1996) Stabilization of helical peptides by mixed spaced salt bridges, J. Biomol. Struct. Dyn., 14, 285–291.

  62. Hendsch, Z. S., and Tidor, B. (1994) Do salt bridges stabilize proteins? A continuum electrostatic analysis, Protein Sci., 3, 211–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sindelar, C. V., Hendsch, Z. S., and Tidor, B. (1998) Effects of salt bridges on protein structure and design, Protein Sci., 7, 1898–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Strop, P., and Mayo, S. L. (2000) Contribution of surface salt bridges to protein stability, Biochemistry, 39, 1251–1255.

    Article  CAS  PubMed  Google Scholar 

  65. Kumar, S., and Nussinov, R. (2002) Close-range electrostatic interactions in proteins, ChemBioChem, 3, 604–617.

    Article  CAS  PubMed  Google Scholar 

  66. Kumar, S., Tsai, C.-J., Ma, B., and Nussinov, R. (2000) Contribution of salt bridges toward protein thermostability, J. Biomol. Struct. Dyn., 17, S1, 79–85.

    Article  PubMed  Google Scholar 

  67. Panja, A. S., Bandopadhyay, B., and Maiti, S. (2015) Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges, PLoS, doi: 10.1371/journal.pone.0131495.

  68. Frillingos, S., Sahin-Toth, M., Lengeler, J. W., and Kaback, H. R. (1995) Helix packing in the sucrose permease of Escherichia coli: properties of engineered charge pairs between helixes VII and XI, Biochemistry, 34, 9368–9373.

    Article  CAS  PubMed  Google Scholar 

  69. Frillingos, S., and Kaback, H. R. (1995) Chemical rescue of Asp237>Ala and Lys358>Ala mutants in the lactose permease of Escherichia coli, Biochemistry, 35, 13363–13367.

    Article  Google Scholar 

  70. Weinglass, A., Whitelegge, J. P., Faull, K. F., and Kaback, H. R. (2004) Monitoring conformational rearrangements in the substrate-binding site of a membrane transport protein by mass spectrometry, J. Biol. Chem., 279, 4185841865.

    Article  Google Scholar 

  71. Guan, L., and Kaback, H. R. (2009) Properties of a LacY efflux mutant, Biochemistry, 48, 9250–9255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koenderink, J. B., Swarts, H. G. P., Willems, P. H., Krieger, E., and De Pont, J. J. (2004) A conformation-specific interhelical salt bridge in the K+ binding site of gastric H,K-ATPase, J. Biol. Chem., 279, 16417–16424.

    Article  CAS  PubMed  Google Scholar 

  73. Durr, K. L., Seuffert, I., and Friedrich, T. (2010) Deceleration of the E1P-E2P transition and ion transport by mutation of potentially salt bridge-forming residues Lys791 and Glu-820 in gastric H+/K+-ATPase, J. Biol. Chem., 285, 39366–39379.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jorgensen, P. L., Hakansson, K. O., and Karlish, S. J. (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions, Annu. Rev. Physiol., 65, 817–849.

    Article  CAS  PubMed  Google Scholar 

  75. Rao, U. S., and Scarborough, G. A. (1990) Chemical state of the cysteine residues in the Neurospora crassa plasma membrane H+-ATPase, J. Biol. Chem., 265, 7227–7235.

    CAS  PubMed  Google Scholar 

  76. Roblez-Martinez, L., Pardo, J. P., Miranda, M., Mendez, T. L., Matus-Ortega, M. G., Mendoza-Hernandez, G., and Guerra-Sanchez, G. (2013) The basidiomycete Ustilago maydis has two plasma membrane H+-ATPases related to fungi and plants, J. Bionerg. Biomembr., 45, 477–290.

    Article  Google Scholar 

  77. Supply, P., Wach, A., Thines-Sempoux, D., and Goffeau, A. (1993) Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae, J. Biol. Chem., 268, 19744–19752.

    CAS  PubMed  Google Scholar 

  78. Supply, P., Wach, A., and Goffeau, A. (1993) Enzymatic properties of the PMA2 plasma membrane-bound H+ATPase of Saccharomyces cerevisiae, J. Biol. Chem., 268, 19753–19759.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Petrov.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 1, pp. 121-136. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-236, November 7, 2016.

In memory of C. W. Slayman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.V. Functioning of yeast Pma1 H+-ATPase under changing charge: Role of Asp739 and Arg811 residues. Biochemistry Moscow 82, 46–59 (2017). https://doi.org/10.1134/S0006297917010059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917010059

Keywords

Navigation