Skip to main content
Log in

Molecular characterization and heterologous expression of quinate dehydrogenase gene from Gluconobacter oxydans IFO3244

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The quinate dehydrogenase (QDH) from Gluconobacter oxydans IFO3244 exhibits high affinity for quinate, suggesting its application in shikimate production. Nucleotide sequence analysis of the qdh gene revealed a full-length of 2475-bp encoding an 824-amino acid protein. The qdh gene has the unusual TTG translation initiation codon. Conserved regions and a signature sequence for the quinoprotein family were observed. Phylogenetic analysis demonstrated relatedness of QDH from G. oxydans to other quinate/shikimate dehydrogenases with the highest similarity (56%) with that of Acinetobacter calcoaceticus ADP1 and lower similarity (36%) with a membrane-bound glucose dehydrogenase of Escherichia coli. The function of the gene coding for QDH was confirmed by heterologous gene expression in pyrroloquinoline quinone-synthesizing Pseudomonas putida HK5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAS:

dense alignment surface method

mGDH:

membrane-bound glucose dehydrogenase

PQQ:

pyrrolo-quinoline quinone

QDH:

quinate dehydrogenase

References

  1. Bongaerts, J., Kramer, M., Muller, U., Raeven, L., and Wubbolts, M. (2001) Metab. Eng., 3, 289–300.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, C. U., Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B., Tai, C. Y., Laver, W. G., and Stevens, R. C. (1997) J. Am. Chem. Soc., 119, 681–690.

    Article  CAS  PubMed  Google Scholar 

  3. Rohloff, J. C., Kent, K. M., Postich, M. J., Becker, M. W., Chapman, H. H., Kelly, D. E., Lew, W., Louie, M. S., McGee, L. R., Prisbe, E. J., Schultze, L. M., Yu, R. H., and Zhang, L. (1998) J. Org. Chem., 63, 4545–4550.

    Article  CAS  Google Scholar 

  4. Yi, J., Draths, K. M., Li, K., and Frost, J. W. (2003) Biotechnol. Prog., 19, 1450–1459.

    Article  CAS  PubMed  Google Scholar 

  5. Knop, D. R., Draths, K. M., Chandran, S. S., Barker, J. L., van Daeniken, R., Weber, W., and Frost, J. W. (2001) J. Am. Chem. Soc., 123, 10173–10182.

    Article  CAS  PubMed  Google Scholar 

  6. Adachi, O., Ano, Y., Toyama, H., and Matsushita, K. (2006) Biosci. Biotechnol. Biochem., 70, 2579–2582.

    Article  CAS  PubMed  Google Scholar 

  7. Adachi, O., Tanasupawat, S., Yoshihara, N., Toyama, H., and Matsushita, K. (2003) Biosci. Biotechnol. Biochem., 67, 2124–2131.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed, S. I., and Giles, N. H. (1969) J. Bacteriol., 99, 231–237.

    CAS  PubMed  Google Scholar 

  9. Mitsuhashi, S., and Davis, B. D. (1954) Biochim. Biophys. Acta, 15, 268–280.

    Article  CAS  PubMed  Google Scholar 

  10. Ingledew, W. M., and Tai, C. C. (1972) Can. J. Microbiol., 18, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  11. Tresguerres, M. E. F., Torrontegui, G. D., and Canovas, J. L. (1970) Arch. Microbiol., 70, 110–118.

    CAS  Google Scholar 

  12. Whiting, G. C., and Coggins, R. A. (1967) Biochem. J., 102, 283–293.

    CAS  PubMed  Google Scholar 

  13. Adachi, O., Yoshihara, N., Tanasupawat, S., Toyama, H., and Matsushita, K. (2003) Biosci. Biotechnol. Biochem., 67, 2115–2123.

    Article  CAS  PubMed  Google Scholar 

  14. Vangnai, A. S., Toyama, H., De-Eknamkul, W., Yoshihara, N., Adachi, O., and Matsushita, K. (2004) FEMS Microbiol. Lett., 241, 157–162.

    Article  CAS  PubMed  Google Scholar 

  15. Hanahan, D. (1983) J. Mol. Biol., 166, 557–580.

    Article  CAS  PubMed  Google Scholar 

  16. Toyama, H., Akiko, F., Matsushita, K., Shinakawa, E., Ameyama, M., and Adachi, O. (1995) J. Bacteriol., 177, 2442–2450.

    CAS  PubMed  Google Scholar 

  17. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  18. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res., 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  19. Alako, B. T., Rainey, D., Nijveen, H., and Leunissen, J. A. (2006) Nucleic Acids Res., 34 (Web Server issue), W104–109.

    Article  CAS  PubMed  Google Scholar 

  20. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997) Prot. Eng., 10, 673–676.

    Article  CAS  Google Scholar 

  21. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd, and Peterson, K. M. (1995) Gene, 166, 175–176.

    Article  CAS  PubMed  Google Scholar 

  22. Dully, J. R., and Grieve, P. A. (1975) Anal. Biochem., 64, 136–141.

    Article  Google Scholar 

  23. Kato, Y., and Asano, Y. (2003) Protein Exp. Purif., 28, 131–139.

    Article  CAS  Google Scholar 

  24. Zhang, Q., Yan, X., Zhang, L., and Tang, W. (2006) Mol. Biol. (Moscow), 40, 418–424.

    CAS  Google Scholar 

  25. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch, A. (2003) Nucleic Acids Res., 31, 3784–3788.

    Article  CAS  PubMed  Google Scholar 

  26. Elsemore, D. A., and Ornston, L. N. (1994) J. Bacteriol., 176, 7659–7666.

    CAS  PubMed  Google Scholar 

  27. Toyama, H., Mathews, F. S., Adachi, O., and Matsushita, K. (2004) Arch. Biochem. Biophys., 428, 10–21.

    Article  CAS  PubMed  Google Scholar 

  28. Felsenstein, J. (2002) PHYLIP (Phylogeny Inference Package) Version 3.6a3, Department of Genome Sciences, University of Washington, Seattle.

    Google Scholar 

  29. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005) Nucleic Acids Res., 33 (Web Server issue), W116–120.

    Article  CAS  PubMed  Google Scholar 

  30. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B. A., Castro, E. D., Lachaize, C., Langendijk-Genevaux, P. S., and Sigrist, C. J. (2008) Nucleic Acids Res., 36, 1–5.

    Article  Google Scholar 

  31. Cleton-Jansen, A. M., Dekker, S., van de Putte, P., and Goosen, N. (1991) Mol. Gen. Genet., 229, 206–212.

    Article  CAS  PubMed  Google Scholar 

  32. Duine, J. A., and Jongejan, J. A. (1989) Annu. Rev. Biochem., 58, 403–426.

    Article  CAS  PubMed  Google Scholar 

  33. Gallop, P. M., Paz, M. A., Fluckiger, R., and Kagan, H. M. (1989) Trends Biochem. Sci., 14, 343–346.

    Article  CAS  PubMed  Google Scholar 

  34. Inoue, T., Sunagawa, M., Mori, A., Imai, C., Fukuda, M., Takagi, M., and Yano, K. (1989) J. Bacteriol., 171, 3115–3122.

    CAS  PubMed  Google Scholar 

  35. Yamada, M., Elias, M. D., Matsushita, K., Migita, C. T., and Adachi, O. (2003) Biochim. Biophys. Acta, 1647, 185–192.

    CAS  PubMed  Google Scholar 

  36. Tonouchi, N., Tsuchida, T., Yoshinaga, F., Horinouchi, S., and Beppu, T. (1994) Biosci. Biotechnol. Biochem., 58, 1899–1901.

    Article  CAS  PubMed  Google Scholar 

  37. Tonouchi, N., Sugiyama, M., and Yokozeki, K. (2003) Biosci. Biotechnol. Biochem., 67, 211–213.

    Article  CAS  PubMed  Google Scholar 

  38. Marx, C. J., and Lidstrom, M. E. (2001) Microbiology, 147, 2065–2075.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Vangnai.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 4, pp. 549–557.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vangnai, A.S., Promden, W., De-Eknamkul, W. et al. Molecular characterization and heterologous expression of quinate dehydrogenase gene from Gluconobacter oxydans IFO3244. Biochemistry Moscow 75, 452–459 (2010). https://doi.org/10.1134/S0006297910040085

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910040085

Key words

Navigation