Skip to main content
Log in

Change in kinetic regime of protein aggregation with temperature increase. Thermal aggregation of rabbit muscle creatine kinase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Creatine kinase thermal aggregation kinetics has been studied in 30 mM Hepes-NaOH buffer, pH 8.0, at two temperatures: 50.6 and 60°C. Aggregation kinetics was analyzed by measuring the growth of apparent absorption (A) at 400 nm. It was found that the limiting value of apparent absorption (A lim) is proportional to protein concentration at both temperatures. The first order rate constant (k I) does not depend on protein concentration in the range 0.05–0.2 mg/ml at temperature 50.6°C, but at temperature 60°C it increases with the growth of protein concentration in the range 0.1–0.4 mg/ml. Kinetic curves, shown in coordinates {A/A lim; t}, in experiments at 50.6°C fuse to a common curve, which coincides with the theoretical curve of creatine kinase denaturation calculated using the denaturation rate constant determined from differential scanning calorimetry. At temperature 60°C, half-transformation time t 1/2 = ln2/k I decreases when protein concentration grows. We conclude that when temperature increased from 50.6 to 60°C, change in the kinetic regime of thermal creatine kinase aggregation took place: at 50.6°C aggregation rate is limited by the stage of protein molecule denaturation, but at 60°C it is limited by the stage of protein aggregate growth, which proceeds as a reaction of pseudo-first order. Small heat shock protein Hsp 16.3 Mycobacterium tuberculosis suppresses the creatine kinase aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CK:

creatine kinase

References

  1. Fink, A. L. (1998) Folding and Design, 3, R9–R23.

    Article  CAS  PubMed  Google Scholar 

  2. Jaenicke, R. (1995) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 348, 97–105.

    CAS  PubMed  Google Scholar 

  3. Kurganov, B. I. (2002) Biochemistry (Moscow), 67, 409–422.

    CAS  Google Scholar 

  4. Kurganov, B. I. (2002) Uspekhi Biol. Khim., 42, 89–138.

    CAS  Google Scholar 

  5. Markossian, K. A., and Kurganov, B. I. (2004) Biochemistry (Moscow), 69, 971–984.

    CAS  Google Scholar 

  6. Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. USA, 95, 13363–13383.

    Article  CAS  PubMed  Google Scholar 

  7. Moriachi, M., and Caughey, G. (1999) Structure, 7, R231–R240.

    Google Scholar 

  8. Gusev, N. B., Bogatcheva, N. V., and Marston, S. B. (2002) Biochemistry (Moscow), 67, 511–519.

    Article  CAS  Google Scholar 

  9. Panasenko, O. O., Kim, M. B., and Gusev, N. B. (2003) Uspekhi Biol. Khim., 43, 59–98.

    CAS  Google Scholar 

  10. Bai, J.-H., Zheng, S.-Y., and Zhou, H.-M. (1998) Biochem. Mol. Biol. Int., 45, 941–951.

    CAS  PubMed  Google Scholar 

  11. Lyubarev, A. E., Kurganov, B. I., Orlov, V. N., and Zhou, H.-M. (1999) Biophys. Chem., 35, 7895–7902.

    Google Scholar 

  12. Meng, F.-G., Hong, Y.-K., He, H.-W., Lyubarev, A. E., Kurganov, B. I., Yan, Y.-B., and Zhow, H.-M. (2004) Biophys. J., 87, 2247–2257.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, L. H., Borders, Ch. L., Jr., Vasquez, J. R., and Kenyon, G. L. (1996) Biochemistry, 35, 7895–7902.

    CAS  PubMed  Google Scholar 

  14. Cox, J. M., Davis, C. A., Chan, Ch., Jourden, M. J., Jorjorian, A. D., Brym, M. J., Snider, M. J., Borders, Ch. L., Jr., and Edmiston, P. L. (2003) Biochemistry, 42, 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  15. Couthon, F., Clottes, E., and Vial, C. (1996) Biochem. Biophys. Res. Commun., 227, 854–860.

    Article  CAS  PubMed  Google Scholar 

  16. Watts, D. C. (1973) in The Enzymes (Boyer, P. I., ed.) Vol. 8, pp. 383–455.

  17. Kenyon, G. L., and Reed, G. H. (1983) Adv. Enzymol., 54, 367–426.

    CAS  PubMed  Google Scholar 

  18. Dawson, M., Eppenberger, H. M., and Kaplan, N. O. (1967) J. Biol. Chem., 242, 210–216.

    CAS  PubMed  Google Scholar 

  19. Walliman, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H. M. (1992) Biochem. J., 281, 21–40.

    Google Scholar 

  20. Kuby, S. A., Noda, L., and Lardy, H. A. (1954) J. Biol. Chem., 209, 191–201.

    CAS  PubMed  Google Scholar 

  21. Kuby, S. A., Noda, L., and Lardy, H. A. (1954) J. Biol. Chem., 210, 65–71.

    CAS  PubMed  Google Scholar 

  22. Rao, J. K. M., Bujacz, G., and Wlodawer, A. (1998) FEBS Lett., 439, 133–137.

    CAS  PubMed  Google Scholar 

  23. Fritz-Wolf, K., Schnyder, T., Wallimann, T., and Kabson, W. (1996) Nature, 381, 341–345.

    Article  CAS  PubMed  Google Scholar 

  24. Leydier, C., Clottes, E., Couthon, F., Marcillat, O., Ebel, C., and Vial, C. (1998) Biochemistry, 37, 17579–17589.

    Article  CAS  PubMed  Google Scholar 

  25. Kuznetsova, I. M., Stepanenko, O. V., Turoverov, K. K., Zhu, L., Zhou, J.-M., Fink, A. L., and Uverssky, V. N. (2002) Biochim. Biophys. Acta, 1396, 138–155.

    Google Scholar 

  26. Chang, Z., Primm, T. P., Jakana, J., Lee, I. H., Serysheva, I., Chiu, W., Gilbert, H. F., and Quicho, F. A. (1996) J. Biol. Chem., 271, 7218–7223.

    CAS  PubMed  Google Scholar 

  27. Gu, L., Abulimiti, A., Li, W., and Chang, Z. (2002) J. Mol. Biol., 319, 517–526.

    CAS  PubMed  Google Scholar 

  28. Abulimiti, A., Fu, X., Gu, L., Chen, X., and Chang, Z. (2003) J. Mol. Biol., 326, 1013–1023.

    Article  CAS  PubMed  Google Scholar 

  29. Fu, X., Jiao, W., Abulimiti, A., and Chang, Z. (2004) Biochemistry (Moscow), 69, 552–557.

    Article  CAS  Google Scholar 

  30. Fu, X., and Chang, Z. (2004) Biochem. Biophys. Res. Commun., 316, 291–299.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X., Fu, X., Ma, Y., and Chang, Z. (2005) Biochemistry (Moscow), 70, 913–919.

    Article  CAS  Google Scholar 

  32. Yao, Q. Z., Zhou, H. M., Hou, L. Z., and Tsou, C. L. (1982) Sci. Sin., 26B, 1296–1302.

    Google Scholar 

  33. Noda, L., Kuby, S. A., and Lardy, H. (1954) Meth. Enzymol., 2, 605–610.

    Google Scholar 

  34. Wood, T. D., Guan, Z., Borders, C. L., Jr., Chen, L. H., Kenyon, G. L., and McLafferty, F. W. (1998) Proc. Natl. Acad. Sci. USA, 95, 3362–3365.

    CAS  PubMed  Google Scholar 

  35. Kurganov, B. I., Dobrov, E. N., Rafikova, E. R., Fedurkina, N. V., Mitskevich, L. G., Belousova, L. V., and Zhou, H.-M. (2001) Proc. 1st Tsinghua Int. Conf. of Protein Sciences (TIPCPS), Tsinghua University, Beijing, China, p. 36.

    Google Scholar 

  36. Kurganov, B. I., Rafikova, E. R., and Dobrov, E. N. (2002) Biochemistry (Moscow), 67, 525–533.

    CAS  Google Scholar 

  37. Rafikova, E. R., Kurganov, B. I., Arutyunyan, A. M., Kust, S. V., Drachev, V. A., and Dobrov, E. N. (2003) Int. J. Biochem. Cell Biol., 1508, 1–9.

    Google Scholar 

  38. Wang, K., and Kurganov, B. I. (2003) Biophys. Chem., 106, 97–109.

    CAS  PubMed  Google Scholar 

  39. Patro, S. Y., and Przybycien, T. M. (1996) Biophys. J., 70, 2888–2902.

    CAS  PubMed  Google Scholar 

  40. Kurganov, B. I. (1998) Biochemistry (Moscow), 63, 364–367.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Fedurkina.

Additional information

Published in Russian in Biokhimiya, 2006, Vol. 71, No. 3, pp. 408–416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedurkina, N.V., Belousova, L.V., Mitskevich, L.G. et al. Change in kinetic regime of protein aggregation with temperature increase. Thermal aggregation of rabbit muscle creatine kinase. Biochemistry (Moscow) 71, 325–331 (2006). https://doi.org/10.1134/S000629790603014X

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629790603014X

Key words

Navigation