Skip to main content
Log in

Parametrization of Optimal Anisotropic Controllers

  • TOPICAL ISSUE
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper provides a parametrization of optimal anisotropic controllers for linear discrete time invariant systems. The controllers to be designed are limited by causal dynamic output-feedback control laws. The obtained solution depends on several adjustable parameters that determine the specific type of controller, and is of the form of a system of the Riccati equations relating to a \({{\mathcal{H}}_{2}}\)-optimal controller for a system formed by a series connection of the original system and the worst-case generating filter corresponding to the maximum value of the mean anisotropy of the external disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Basile, G. and Marro, G., Controlled and conditioned invariant subspaces in linear system theory, J. Optim. Theory Appl., 1969, vol. 3, pp. 306–315. https://doi.org/10.1007/BF0093137010.1007/BF00931370

    Article  MathSciNet  Google Scholar 

  2. Chen, B.M., Saberi, A., and Shamash, Y., Necessary and sufficient conditions under which a discrete time H 2-optimal control problem has a unique solution, Proc. 32nd IEEE Conf. Decision and Control, 1993, vol. 1, pp. 805–810. https://doi.org/10.1109/CDC.1993.325038

  3. Chen, B.M., Saberi, A., Shamash, Y., and Sannuti, P., Construction and parameterisation of all static and dynamic H 2-optimal state feedback solutions for discrete time systems, Proc. 32nd IEEE Conf. Decision and Control, 1993, vol. 1, pp. 126–131. https://doi.org/10.1109/CDC.1993.325177

  4. Diamond, P., Kloeden, P., and Vladimirov, I., Mean anisotropy of homogeneous Gaussian random fields and anisotropic norms of linear translation-invariant operators on multidimensional integer lattices, J. Appl. Math. Stochast. Anal., 2003, vol. 16, no. 3, pp. 209–231. https://doi.org/10.1155/S1048953303000169

    Article  MathSciNet  Google Scholar 

  5. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space solutions to standard H 2 and H control problems, IEEE Transactions on Automatic Control, 1989, vol. 34, pp. 831–847. https://doi.org/10.1109/9.29425

    Article  MathSciNet  Google Scholar 

  6. Saberi, A., Sannuti, P., and Stoorvogel, A.A., H 2 optimal controllers with measurement feedback for continuous-time systems: flexibility in closed-loop pole placement, Automatica, 1997, vol. 33, no. 3, pp. 289–304. https://doi.org/10.1016/S0005-1098(96)00195-1

    Article  Google Scholar 

  7. Schumacher, J.M., Dynamic feedback in finite- and infinite-dimensional linear systems, Mathematisch Centrum, 1981. ISBN: 9061962293.

    Google Scholar 

  8. Stoorvogel, A.A., The H control problem: A state space approach, Phd Thesis, Mathematics and Computer Science, Technische Universiteit Eindhoven, 1981. https://doi.org/10.6100/IR338287

  9. Stoorvogel, A.A., The singular H2 control problem, Automatica, 1992, vol. 28, no. 3, pp. 627–631. https://doi.org/10.1016/0005-1098(92)90189-M

    Article  MathSciNet  Google Scholar 

  10. Trentelman, H.L. and Stoorvogel, A.A., Sampled-data and discrete-time H 2 optimal control, Proc. 32nd IEEE Conf. Decision and Control., 1993, vol. 1, pp. 331–336. https://doi.org/10.1109/CDC.1993.325136

  11. Trentelman, H.L. and Stoorvogel, A.A., Sampled-data and discrete-time H 2 optimal control, SIAM J. Control and Optimization, 1995, vol. 33, no. 3, pp. 834–862. https://doi.org/10.1137/S0363012992241995

    Article  MathSciNet  Google Scholar 

  12. Vladimirov, I.G., Kurdjukov, A.P., and Semyonov, A.V., On computing the anisotropic norm of linear discrete-time-invariant systems, IFAC Proceedings Volumes, 1996, vol. 29, no. 1, pp. 3057–3062. https://doi.org/10.1016/S1474-6670(17)58144-6

  13. Vladimirov, I.G., Kurdyukov, A.P., and Semyonov, A.V., State-space solution to anisotropy-based stochastic H -optimization problem, IFAC Proceedings Volumes, 1996, vol. 29, no. 1, pp. 3816–3821.

Download references

ACKNOWLEDGMENTS

The author of the paper thanks Igor Gennadievich Vladimirov and Alexander Viktorovich Yurchenkov who took part in the discussion of the part of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kustov.

Additional information

This paper was recommended for publication by V.M. Glumov, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Proof of Theorem 2. First, let us show that the conditions (i)(vi) from the formulation of the Theorem 2 are equivalent to the following:

(a) (\(\bar {A}\), \({{\bar {B}}_{u}}\)) is stabilizable,

(b) (\({{\bar {C}}_{y}}\), \(\bar {A}\)) is detectable,

(c) \(\operatorname{im} ({{\bar {B}}_{Q}} - {{\bar {B}}_{u}}\bar {D}_{P}^{ + }\bar {R}) \subseteq \mathcal{W}({{\bar {F}}_{{{{P}_{u}}}}})\),

(d) \(S({{\bar {F}}_{{{{Q}_{y}}}}}) \subseteq \ker ({{\bar {C}}_{P}} - \bar {R}\bar {D}_{Q}^{ + }{{\bar {C}}_{y}})\),

(e) \(\mathcal{S}({{\bar {F}}_{{{{Q}_{y}}}}}) \subseteq \mathcal{W}({{\bar {F}}_{{{{P}_{u}}}}})\),

(f) \((\bar {A} - {{\bar {B}}_{u}}\bar {D}_{P}^{ + }\bar {R}\bar {D}_{Q}^{ + }{{\bar {C}}_{y}})\mathcal{S}({{\bar {F}}_{{{{Q}_{y}}}}}) \subseteq \mathcal{W}({{\bar {F}}_{{{{P}_{u}}}}})\),

where matrices \({{\bar {C}}_{P}}\), \({{\bar {D}}_{P}}\), \({{\bar {B}}_{Q}}\), \({{\bar {D}}_{Q}}\), and \(\bar {R}\), as well as systems \({{\bar {F}}_{{{{P}_{u}}}}}\) and \({{\bar {F}}_{{{{Q}_{y}}}}}\) are set in accordance to the material presented in Subsection 2.3 in relation to the system (18). Note that the conditions (a)–(f) are a direct analogue of the conditions (i)–(vi) of Theorem 1 for system (18).

The equivalence of (i) ⇔ (a) and (ii) ⇔ ((b) is obvious due to the notation (19). For further proof, let us determine the relation of the sets \(\mathcal{W}({{F}_{{{{P}_{u}}}}})\) and \(\mathcal{S}({{F}_{{{{Q}_{y}}}}})\) from Theorem 1 to the sets \(\mathcal{W}({{\bar {F}}_{{{{P}_{u}}}}})\) and \(\mathcal{S}({{\bar {F}}_{{{{Q}_{y}}}}})\), respectively. Given the system \(\bar {F}\), using Definitions 4 and 5, it can be verified that there exist matrices \(\bar {\Pi }\) and \(\bar {\Lambda }\) such that

$$\mathcal{W}({{\bar {F}}_{{{{P}_{u}}}}}) = \mathcal{W}({{F}_{{{{P}_{u}}}}})\,\, \times \,\,{{\mathbb{R}}^{{{{n}_{h}}}}},\quad \mathcal{S}({{\bar {F}}_{{{{Q}_{y}}}}}) = \mathcal{S}({{F}_{{{{Q}_{y}}}}})\,\, \times \,\,{{\{ 0\} }^{{{{n}_{h}}}}},$$
(A.1a)
$$(\bar {A} + {{\bar {B}}_{u}}\bar {\Pi })\mathcal{W}({{\bar {F}}_{{{{P}_{u}}}}}) \subseteq \mathcal{W}({{\bar {F}}_{{{{P}_{u}}}}}),\quad (\bar {A} + \bar {\Lambda }{{\bar {C}}_{y}})\mathcal{S}({{\bar {F}}_{{{{Q}_{y}}}}}) \subseteq \mathcal{S}({{\bar {F}}_{{{{Q}_{y}}}}}),$$
(A.1b)
$$\rho (\bar {A} + {{\bar {B}}_{u}}\bar {\Pi }) < 1,\quad \rho (\bar {A} + \bar {\Lambda }{{\bar {C}}_{y}}) < 1.$$
(A.1c)

After this, we can conclude that the equivalence of the conditions (iii) ⇔ (c) and (iv) ⇔ (d) holds due to the fact that

$$\ker ({{\bar {C}}_{P}} - \bar {R}\bar {D}_{Q}^{ + }{{\bar {C}}_{y}}) = \ker ({{C}_{P}} - ED_{Q}^{ + }{{C}_{y}})\,\, \times \,\,{{\mathbb{R}}^{{{{n}_{h}}}}},$$
(A.2a)
$$\operatorname{im} ({{\bar {B}}_{Q}} - {{\bar {B}}_{u}}\bar {D}_{P}^{ + }\bar {R}) = \operatorname{im} ({{B}_{Q}} - {{B}_{u}}D_{P}^{ + }R)\,\, \times \,\,{{\{ 0\} }^{{{{n}_{h}}}}}.$$
(A.2b)

Finally, by (A.1), the equivalence of the conditions (v) ⇔ (e) and (vi) ⇔ (e) is proved.

The structure of the controller (20) is determined by the content of Theorem 1.

Theorem 2 is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kustov, A.Y. Parametrization of Optimal Anisotropic Controllers. Autom Remote Control 84, 1055–1064 (2023). https://doi.org/10.1134/S0005117923100077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923100077

Keywords:

Navigation