Skip to main content
Log in

Identification of Periodic Regimes in a Dynamic System

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract—

For a dynamic system given by first-order ordinary differential equations, the problem of identification of periodic regimes is investigated. This problem is the establishment the periodicity of an arbitrary solution via the periodicity of the observed value of solution. The conditions under which the problem of identification of periodic regimes is solvable are found. Formulated and proven theorems supplement the well-known results on the observability of dynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Zubov, V.I., Lektsii po teorii upravleniya. Uchebnoe posobie (Lectures on Control Theory. Tutorial), 2nd ed., St. Petersburg: Lan’, 2009.

  2. Leonov, G.A., Vvedeniye v teoriyu upravleniya (Introduction to Control Theory), St. Petersburg: Publishing House of St. Petersburg University, 2004.

  3. Krasnoselskii, M.A., Operator sdviga po trayektoriyam differentsial’nykh uravnenii (Trajectory Shift Operator Differential Equations), Moscow: Nauka, 1966.

  4. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theory of Stability), Moscow: Nauka, 1967.

  5. Bliman, P.A., Krasnosel’skii, A.M., and Rachinskii, D.I., Sector Estimates for Nonlinearities and the Existence of Auto-Oscillations in Control Systems, Autom. Remote Control, 2000, vol. 61, no. 6, pp. 889–903.

    MathSciNet  Google Scholar 

  6. Krasnosel’skii, A.M. and Rachinskii, D.I., Existence of Continua of Cycles in Hamiltonian Control Systems, Autom. Remote Control, 2001, vol. 62, no. 2, pp. 227–235.

    Article  MathSciNet  MATH  Google Scholar 

  7. Perov, A.I., On One Stability Criterion for Linear Systems of Differential Equations with Periodic Coefficients, Autom. Remote Control, 2013, vol. 74, no. 2, pp. 183–195.

    Article  MathSciNet  MATH  Google Scholar 

  8. Krasnoselskii,M.A. and Zabreiko, P.P., Geometricheskie metody nelineinogo analiza (Geometric Methods of Non-Linear Analysis), Moscow: Nauka, 1975.

  9. Hartman, P., Ordinary Differential Equations, Wiley, 1964.

    MATH  Google Scholar 

  10. Gantmakher, F.R., Teoriya matrits (Matrix Theory), Moscow: Nauka, 1966.

Download references

Funding

The work was supported by the grant of Russian Science Foundation (project no. 23-21-00032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Naimov, M. V. Bystretskii or A. B. Nazimov.

Additional information

This paper was recommended for publication N.V. Kuznetsov, a member of the Editorial Board

APPENDIX

APPENDIX

Let us verify the validity of the following lemma.

Lemma 1. For an arbitrary vector u\({{\mathbb{R}}^{n}}\) the identity CetAu ≡ 0, t ∈ (t1, t2) is equivalent to

$$Cu = 0,\quad CAu = 0,\quad ...,\quad C{{A}^{{n - 1}}}u = 0.$$
(A.1)

Proof of Lemma 1. Let the identity CetAu ≡ 0, t ∈ (t1, t2) holds. Let’s check that CetAu ≡ 0, tR. To do this, it suffices to show that for any \({v}\)\({{\mathbb{R}}^{m}}\) the function φ(t) = 〈CetAu, \({v}\)〉 is identically equal to zero on \(\mathbb{R}\).

Let’s find the derivatives of the function φ(t): φ(k)(t) = 〈CAketAu, \({v}\)〉, k = 1, 2, …. Next, we use the fact that according to the Hamilton–Cayley theorem [10, p. 93] matrix A satisfies its characteristic equation

$${{A}^{n}} + {{q}_{1}}{{A}^{{n - 1}}} + ... + {{q}_{{n - 1}}}A + {{q}_{n}}E = O,$$

where

$${{\lambda }^{n}} + {{q}_{1}}{{\lambda }^{{n - 1}}} + ... + {{q}_{{n - 1}}}\lambda + {{q}_{n}} \equiv \det (\lambda E - A).$$

From here it follows that function φ(t) satisfies the linear homogeneous differential equation

$${{y}^{{(n)}}}(t) + {{q}_{1}}{{y}^{{(n - 1)}}}(t) + ... + {{q}_{{n - 1}}}y'(t) + {{q}_{n}}y(t) = 0,\quad t \in {{R}^{n}}.$$

For this equation, only the zero solution can vanish identically on some interval. Since according to the condition φ(t) ≡ 0, t ∈ (t1, t2), so φ(t) ≡ 0, tR. Therefore, the identity CetAu ≡ 0, tR holds. Differentiating this identity k times and setting k = 0, 1, …, n – 1, t = 0, we obtain equalities (A.1).

Conversely, if equality (A.1) holds, then from the Hamilton–Cayley theorem follows that CAku = 0 for any integer k ≥ 0. Hence, by the definition of the matrix exponent, we derive CetAu ≡ 0, t\(\mathbb{R}\). The lemma is proven.

Proof of Theorem 1. Let condition (4) holds and x(t) be a solution of the system of Eq. (2) satisfying the conditions

$$Cx(t + \omega ) = Cx(t),\quad t \in ( - \infty , + \infty ).$$
(A.2)

We solve the system of Eqs. (2) with respect to x(t), assuming that the vector-function f(t, Cx(t)) is given:

$$x(t) = {{e}^{{tA}}}\left( {x(0) + \int\limits_0^t {{{e}^{{ - sA}}}f(s,Cx(s))ds} } \right).$$
(A.3)

Given this equality, condition (A.2) takes the following form:

$$C{{e}^{{tA}}}\left( {\left( {{{e}^{{\omega A}}} - E} \right)x(0) + \int\limits_0^{t + \omega } {{{e}^{{(\omega - s)A}}}f(s,Cx(s))ds - \int\limits_0^t {{{e}^{{ - sA}}}f(s,Cx(s))ds} } } \right) = 0.$$

It is easy to verify that

$$\begin{gathered} \frac{d}{{dt}}\left( {\int\limits_0^{t + \omega } {{{e}^{{(\omega - s)A}}}} f(s,Cx(s))ds - \int\limits_0^t {{{e}^{{ - sA}}}f(s,Cx(s))ds} } \right) \\ = f(t + \omega ,Cx(t + \omega )) - f(t,Cx(t)) = 0,\quad t \in ( - \infty , + \infty ). \\ \end{gathered} $$

Consequently

$$\int\limits_0^{t + \omega } {{{e}^{{(\omega - s)A}}}f(s,Cx(s))ds - \int\limits_0^t {{{e}^{{ - sA}}}f(s,Cx(s))ds \equiv \int\limits_0^\omega {{{e}^{{(\omega - s)A}}}} f(s,Cx(s))ds,} } $$

and we obtain the equality

$$C{{e}^{{tA}}}\left( {\left( {{{e}^{{\omega A}}} - E} \right)x(0) + \int\limits_0^\omega {{{e}^{{(\omega - s)A}}}} f(s,Cx(s))ds} \right) = 0,\quad t \in ( - \infty , + \infty ).$$

From here by virtue of the Lemma we obtain:

$$B\left( {\left( {{{e}^{{\omega A}}} - E} \right)x(0) + \int\limits_0^\omega {{{e}^{{(\omega - s)A}}}f(s,Cx(s))ds} } \right) = 0.$$
(A.4)

Thus, for the solution x(t) of the system (2) from (A.2) follows (A.4) and

$$f(t + \omega ,Cx(t + \omega )) = f(t,Cx(t)),\quad t \in ( - \infty , + \infty ).$$
(A.5)

The converse is also true, if (A.4) and (A.5) hold for the solution x(t) of the system of Eqs. (2), then (A.2) holds.

Since rank(B) = n, therefore (A.4) is possible if only under the condition

$$\left( {{{e}^{{\omega A}}} - E} \right)x(0) + \int\limits_0^\omega {{{e}^{{(\omega - s)A}}}f(s,Cx(s))ds = 0.} $$
(A.6)

From (A.3) and (A.6) it follows ω-periodicity of x(t).

Theorem 1 is proven.

Proof of Theorem 2. Above it was shown that for the solution x(t) of the system of Eqs. (2), condi- tion (A.2) is equivalent to the conditions (A.4) and (A.5). Assuming f(s, Cx(s)) ≡ g(s) in these conditions, it follows that the system of Eqs. (6) has a unique solution with ω-periodic observed value Cx(t) if and only if the system of algebraic equations

$$B\left( {\left( {{{e}^{{\omega A}}} - E} \right)x(0) + \int\limits_0^\omega {{{e}^{{(\omega - s)A}}}g(s)ds} } \right) = 0$$

has a unique solution with unknown x(0) ∈ \({{\mathbb{R}}^{n}}\). But this is possible only under the condition

$${\text{rank}}\left( {B\left( {{{e}^{{\omega A}}} - E} \right)} \right) = n.$$

This condition, according to the definition and the general properties of the rank of a matrix, is equivalent to the conditions (4) and (7).

Theorem 2 is proven.

Proof of Theorem 3. Suppose the inequality (10) doesn’t hold. Then there is an infinite sequence of vector-functions zj(t) ∈ C1([0, 1]; \({{\mathbb{R}}^{n}}\)), j = 1, 2, … such that

$$\mathop {\max }\limits_{0 \leqslant t \leqslant 1} {\text{|}}{{z}_{j}}(t){\text{|}} > j\left( {\mathop {\max }\limits_{0 \leqslant t \leqslant 1} \left| {\frac{{d{{z}_{j}}(t)}}{{dt}} - A{{z}_{j}}(t)} \right| + \mathop {\max }\limits_{0 \leqslant t \leqslant 1} {\text{|}}C{{z}_{j}}(t){\text{|}}} \right),\quad j = 1,2,....$$

Consider the vector-functions

$${{{v}}_{j}}(t) = r_{j}^{{ - 1}}{{z}_{j}}(t),\quad t \in [0,\,\,1],\quad j = 1,\,\,2,\,\,...,$$

where rj is the maximum of the function |zj(t)| on the interval [0, 1]. For these vector-functions we have:

$$1 = \mathop {\max }\limits_{0 \leqslant t \leqslant 1} {\text{|}}{{{v}}_{j}}(t){\text{|}} > j\left( {\mathop {\max }\limits_{0 \leqslant t \leqslant 1} {\text{|}}{v}_{j}^{'}(t) - A{{{v}}_{j}}(t){\text{|}} + \mathop {\max }\limits_{0 \leqslant t \leqslant 1} {\text{|}}C{{{v}}_{j}}(t){\text{|}}} \right),\quad j = 1,2,....$$

Passing to the limit along a uniformly convergent subsequence of the vector-functions \({{{v}}_{{{{j}_{1}}}}}\)(t), \({{{v}}_{{{{j}_{2}}}}}\)(t), …, as a limit we obtain the function \({v}\)(t) ∈ C1 ([0, 1]; \({{\mathbb{R}}^{n}}\)) such that

$$\mathop {\max }\limits_{0 \leqslant t \leqslant 1} {\text{|}}{v}(t){\text{|}} = 1,\quad {v}{\kern 1pt} '(t) - A{v}(t) \equiv 0,\quad C{v}(t) \equiv 0.$$

From here it follows that

$${v}(t) \equiv {{e}^{{tA}}}{v}(0),\quad {v}(0) \ne 0,\quad C{{e}^{{tA}}}{v}(0) \equiv 0.$$

By virtue of the Lemma 1 from the last identity it follows that the system of Eqs. (A.1) has a non-zero solution, which contradicts the condition rank(B) = n. The inequality (10) is proven.

Let LM < 1 and x(t) be an arbitrary solution of the system of Eqs. (9). Substituting x(t + a + ω) – x(t + a) in(10) instead of z(t), we get

$$\begin{gathered} \mathop {\max }\limits_{a \leqslant t \leqslant a + 1} {\text{|}}x(t + \omega ) - x(t){\text{|}} \\ \leqslant M\left( {\mathop {\max }\limits_{a \leqslant t \leqslant a + 1} {\text{|}}G(t,x(t + \omega )) - G(t,x(t)){\text{|}} + \mathop {\max }\limits_{a \leqslant t \leqslant a + 1} {\text{|}}Cx(t + \omega ) - Cx(t){\text{|}}} \right). \\ \end{gathered} $$

Further, by using the Lipschitz condition

$$\mathop {\max }\limits_{a \leqslant t \leqslant a + 1} {\text{|}}G(t,x(t + \omega )) - G(t,x(t)){\text{|}} \leqslant \mathop {L\max }\limits_{\,\,\,\,\,\,a \leqslant t \leqslant a + 1} {\text{|}}x(t + \omega ) - x(t){\text{|}}{\text{,}}$$

we obtain the inequality (11).

Theorem 3 is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naimov, A.N., Bystretskii, M.V. & Nazimov, A.B. Identification of Periodic Regimes in a Dynamic System. Autom Remote Control 84, 470–475 (2023). https://doi.org/10.1134/S0005117923050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923050077

Keywords:

Navigation