Skip to main content
Log in

Robust static control algorithm for linear objects

  • Robust and Adaptive Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a robust static control algorithm for linear objects under parametric and structural uncertainty and an external uncontrollable disturbance. The resulting algorithm ensures that the object output tracks the reference signal with the necessary precision. We give modeling results that illustrate that the algorithm operates correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luinberger, D., Observers for Multivariable Systems, IEEE Trans. Automat. Control, 1966, vol. AC-11, no. 2, pp. 190–197.

    Article  Google Scholar 

  2. Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems, Trans. ASME-J. Basic Eng., 1960, no. 82 (Ser. D), pp. 35–45.

    Google Scholar 

  3. Esfandiary, F. and Khalil, H.K., Output Feedback Stabilization of Fully Linearizable Systems, Int. J. Control, 1992, vol. 56, no. 5, pp. 1007–1037.

    Article  Google Scholar 

  4. Bobtsov, A.A., A Robust Control Algorithm for Tracking the Reference Signal, Autom. Remote Control, 2003, vol. 64, no. 6, pp. 943–950.

    Article  MATH  MathSciNet  Google Scholar 

  5. Slotine, J.J.E., Hedrick, J.K., and Misawa, E.A., On Sliding Observers for Nonlinear Systems, J. Dynam. Syst., Meas., Control, 1987, vol. 109, pp. 245–252.

    Article  MATH  Google Scholar 

  6. Utkin, V.I., Sliding-Modes in Control Optimization, Berlin: Springer-Verlag, 1992.

    Book  MATH  Google Scholar 

  7. Han, J., A Class of Extended State Observers for Uncertain System, Control Decision, 1995, vol. 10, no. 1, pp. 85–88.

    Google Scholar 

  8. Wang, W. and Gao, Z., A Comparison Study of Advanced State Observer Design Techniques, Proc. Am. Control Conf., 2003, pp. 4754–4759.

    Google Scholar 

  9. Veluvolu, K.C., Kim, M.Y., and Lee, D., Nonlinear Sliding Mode High-Gain Observers for Fault Estimation, Int. J. Syst. Sci., 2011, vol. 42, no. 7, pp. 1065–1074.

    Article  MATH  MathSciNet  Google Scholar 

  10. Atassi, A.N. and Khalil, H.K., A Separation Principle for the Stabilization of Class of Nonlinear Systems, IEEE Trans. Automat. Control, 1999, vol. 44, no. 9, pp. 1672–1687.

    Article  MATH  MathSciNet  Google Scholar 

  11. Tsykunov, A.M., Robust Control Algorithms with Compensation of Bounded Perturbations, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1213–1224.

    Article  MATH  MathSciNet  Google Scholar 

  12. Letov, A.M., Dinamika poleta i upravlenie (Flight Dynamics and Control), Moscow: Nauka, 1969.

    Google Scholar 

  13. Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. Analytical Approach to Analysis and Design of the Matrix Systems), Kaluga: Nauchn. Lit. N.F. Bochkarevoi, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Furtat.

Additional information

Original Russian Text © I.B. Furtat, 2015, published in Avtomatika i Telemekhanika, 2015, No. 3, pp. 94–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtat, I.B. Robust static control algorithm for linear objects. Autom Remote Control 76, 446–457 (2015). https://doi.org/10.1134/S000511791503008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791503008X

Keywords

Navigation