Skip to main content
Log in

Two-channel adaptive hybrid control of the air-to-fuel ratio and torque of automobile engines

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Combined feedforward/feedback control algorithm for highly nonlinear systems was proposed on the basis of the approximating hybrid model. The designed MIMO controller enables simultaneous control of the air-to-fuel ratio and torque for injector automobile engines. The theoretical results were validated experimentally with physical cars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balluchi, A., Benvenuti, L., di Benedetto, M.D., et al., Automotive Engine Control and Hybrid Systems: Challenges And Opportunities, Proc. IEEE, 2000, vol. 88, no. 7, pp. 888–912.

    Article  Google Scholar 

  2. Butts, K., Kolmanovsky, I., Sivashankar, N., et al., Hybrid Systems in Automotive Control Applications, in Control Using Logic-Based Switching, Berlin: Springer-Verlag, 1997, pp. 173–189.

    Chapter  Google Scholar 

  3. Derong, L., Javaherian, H., Kovalenko, O., et al., Adaptive Critic Learning Techniques for Engine Torque and Air-Fuel Ratio Control, IEEE Trans. Syst., Man, Cybern., Part B: Cybern., 2008, vol. 38, no. 4, pp. 988–993.

    Article  Google Scholar 

  4. Dobner, D.J., A Mathematical Engine Model for Development of Dynamic Engine Control, SAE Paper 800054, 1980.

  5. Bemporad, A., Giorgetti, N., Kolmanovsky, I.V., and Hrovat, D., A Hybrid System Approach to Modeling and Optimal Control of DISC Engines, in Proc. 41st IEEE Conf. Decision and Control, Las Vegas, Nevada, USA, 2002, pp. 1582–1587.

  6. Druzhinina, M., Kolmanovsky, I., and Jing Sun, Hybrid Control of a Gasoline Direct Injection Engine, in Proc. 38th IEEE Conf. Decision and Control, 1999, vol. 3, pp. 2667–2672.

    Google Scholar 

  7. Jankovic, M. and Kolmanovsky, I., Constructive Lyapunov Control Design for Turbocharged Diesel Engines, IEEE Trans. Control Syst. Technol., 2000, vol. 8, no. 2, pp. 288–299.

    Article  Google Scholar 

  8. Kim, Y.-W., Rizzoni, G., and Utkin, V., Automotive Engine Diagnosis and Control via Nonlinear Estimation, IEEE Control Syst., 1998, vol. 18, no. 5, pp. 84–99.

    Article  Google Scholar 

  9. Rokusho, T. and Yamakita, M., Robust Combined Feedforward and Feedback Control for Start Up Engine Control, in IEEE Int. Conf. Control Appl., 2008, pp. 227–232.

  10. Stotsky, A.A., Automotive Engines: Control, Estimation, Statistical Detection, Berlin: Springer, 2009.

    Google Scholar 

  11. Giryavets, A.K., Teoriya upravleniya avtomobil’nym benzinovym dvigatelem (Theory of Control of Automobile Gasoline Engine), Moscow: Stroiizdat, 1997.

    Google Scholar 

  12. Turin, R. and Geering, H., On-Line Identification of Air-to-Fuel Ratio Dynamics in a Sequentially Injected SI Engine, SAE Technical Paper 930857, 1993.

  13. Dongyun Wang, Kai Wang, and Mingcong Deng, The Application Study of Intelligent PID Algorithm for the Internal Combustion Engine Control System, in Int. Conf. Mechatron. Automat. (ICMA), Aug. 4–7, 2010, pp. 923–927.

  14. Zhao, F.-Q., Lai, M.-C., and Harrington, D.L., A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines, SAE J. Engines, 1997, vol. 106, no. 970627, pp. 861–904.

    Google Scholar 

  15. Gerasimov, D.N., Dzhavakherian, Kh., Efimov, D.V., et al., Injector Engine as a Control Plant. I. Engine Scheme and Design of the Mathematical Model, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 5, pp. 135–147.

  16. Gerasimov, D.N., Dzhavakherian, Kh., Efimov, D.V., et al., Injector Engine as a Control Plant. II. Problem of Engine Automatic Control, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 6, pp. 170–181.

  17. Lukanin, V.N., Morozov, K.A., Khachiyan, A.C., et al., Dvigateli vnutrennego sgoraniya. V 3 kn. Kn. 1 Teoriya rabochikh protsessov: Uch. dlya Vuzov (Internal Combustion Engines. in 3 books. Book 1: Theory of Operation), Lukanin, V.N., Ed., Moscow: Vysshaya Shkola, 2005, 2nd revised and completed ed.

    Google Scholar 

  18. Kolchin, A.I., Raschet avtomobil’nykh i traktornykh dvigatelei: ucheb. posobie dlya vuzov (Calculation of the Automobile and Tractor Engines. Textbook), Kolchin, A.I. and Demidov, V.P., Moscow: Vysshaya Shkola, 2003, 3rd revised and completed ed.

    Google Scholar 

  19. Heemels, W.P.M.H., Schutter, B.De, and Bemporad, A., Equivalence of Hybrid Dynamical Models, Automatica, 2001, vol. 37, pp. 1085–1091.

    Article  MATH  Google Scholar 

  20. Bemporad, A., Efficient Conversion of Mixed Logical Dynamical Systems Into an Equivalent Piecewise Affine Form, IEEE Trans. Automat. Control, 2004, vol. 49, no. 5, pp. 832–838.

    Article  MathSciNet  Google Scholar 

  21. Takagi, T. and Sugeno, M., Fuzzy Identification of Systems and its Applications to Modeling and Control, IEEE Trans. Syst., Man, Cybern., 1985, vol. 15, pp. 116–132.

    Article  MATH  Google Scholar 

  22. Ljung, L., System Identification: Theory for the User, Englewood Cliffs: Prentice Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol’zovatelya, Moscow: Nauka, 1991.

    MATH  Google Scholar 

  23. Eykhoff, P., System Identification: Parameter and State Estimation, Chichester: Wiley, 1974. Translated under the title Osnovy identifikatsii sistem upravleniya: otsenivanie parametrov i sostoyaniya, Moscow: Mir, 1975.

    Google Scholar 

  24. Liberzon, D., Switching in Systems and Control, Boston: Birkhauser, 2003.

    Book  MATH  Google Scholar 

  25. Efimov, D.V., Uniting Global and Local Controllers under Acting Disturbances, Automatica, 2006, vol. 42, pp. 489–495.

    Article  MathSciNet  MATH  Google Scholar 

  26. Krut’ko, P.D., Obratnye zadachi dinamiki v teorii avtomaticheskogo upravleniya. Tsikl lektsii: uch. posobie dlya vuzov (Lectures on the Inverse Problems of Dynamics in the Automatic Control Theory. Textbook), Moscow: Mashinostroenie, 2004.

    Google Scholar 

  27. Kapoor, N., Teel, A.R., and Daoutidis, P., An Anti-Windup Design for Linear Systems with Input Saturation, Automatica, 1998, vol. 34(5), pp. 559–574.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sofrony, J., Anti-windup Compensation of Input Constrained Systems: Synthesis Using Riccati Equations, Saarbrücken: VDM Verlag, 2009.

    Google Scholar 

  29. Camacho, E. and Bordons, S., Model Predictive Control, New York: Springer, 2004.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Kolyubin, D.V. Efimov, V.O. Nikiforov, A.A. Bobtsov, 2012, published in Avtomatika i Telemekhanika, 2012, No. 11, pp. 42–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolyubin, S.A., Efimov, D.V., Nikiforov, V.O. et al. Two-channel adaptive hybrid control of the air-to-fuel ratio and torque of automobile engines. Autom Remote Control 73, 1794–1807 (2012). https://doi.org/10.1134/S0005117912110033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117912110033

Keywords

Navigation