Skip to main content
Log in

Modeling population dynamics under the influence of harmful substances on the individual reproduction process

  • Control in Biological Systems and Medicine
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We present a mathematical model of a population developing while consuming polluting substances that negatively affect individual reproduction. We describe equations of the model and study the properties of model solutions, including existence and stability of equilibrium points. We give the results of a numerical experiment that shows that it is possible to control the population size by changing the rate with which polluting substances are introduced into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Poluektov, R.A., Pykh, Yu.A., and Shvytov, I.A., Dinamicheskie modeli ekologicheskikh sistem (Dynamic Models of Ecological Systems), Leningrad: Gidrometeoizdat, 1980.

    Google Scholar 

  2. Fedorov, V.D. and Gil’manov, T.G., Ekologiya (Ecology), Moscow: Mosk. Gos. Univ., 1980.

    Google Scholar 

  3. Svirezhev, Yu.M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii (Nonlinear Waves, Dissipative Structures, and Catastrophes in Ecology), Moscow: Nauka, 1987.

    Google Scholar 

  4. Krestin, S.V. and Rozenberg, G.S., One Mechanism of the Flowering of Water in a Plain-Type Reservoir, Biophysics, 1996, vol. 41, no. 3, pp. 650–654.

    Google Scholar 

  5. Il’ichev, V.G., Delta Functions and the Investigation of Volterra Ecological Models in a Changing Environment, Izv. Vyssh. Uchebn. Zaved., Mat., 1998, vol. 42, no. 4, pp. 23–33.

    MathSciNet  Google Scholar 

  6. Abrosov, N.S., Ecological Factors and the Mechanisms of Forming the Species Diversity in Ecosystems and the Problem of Species Compatibility, in Ekologiya v Rossii na rubezhe XXI v (Ecology in Russia on the Turn of the XXI Century), Moscow: Nauchnyi Mir, 1999, pp. 54–69.

    Google Scholar 

  7. Bibik, Yu.V., Popov, S.V., and Sarancha, D.A., Neavtonomnye matematicheskie modeli ekologicheskikh sistem (Non-autonomous Mathematical Models of Ecological Systems), Moscow: Vychisl. Tsentr Ross. Akad. Nauk, 2004.

    Google Scholar 

  8. Novosel’tsev, V.N., Natural Organism Technologies and Polonium-210 Poisoning, in Proc. of the 4th International Conference on Control Problems, Proc. of the Institute of Control Sciences of the RAS, 2009, section S.2 “Control theory in interdisciplinary medical-biological studies,” pp. 884–892.

  9. Pichugina, A.N., An Integrodifferential Model of a Population under the Effects of Pollutants, Sib. Zh. Ind. Mat., 2004, vol. 7, no. 4, pp. 130–140.

    MATH  MathSciNet  Google Scholar 

  10. Pertsev, N.V., Tsaregorodtseva, G.E., and Pichugina, A.N., Stability Analysis for Equilibrium Points of One Model of Population Dynamics, Vestn. Omsk. Univ., 2009, no. 2, pp. 46–49.

  11. Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Nauka, 1974.

    Google Scholar 

  12. Krasnosel’skii, M.A., Polozhitel’nye resheniya operatornykh uravnenii (Positive Solutions of Operator Equations), Moscow: Fizmatgiz, 1962.

    Google Scholar 

  13. Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., et al., Priblizhennoe reshenie operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.

    Google Scholar 

  14. Barbashin, E.A., Vvedenie v teoriyu ustoichivosti (Introduction to Stability Theory), Moscow: Nauka, 1967.

    Google Scholar 

  15. Obolenskii, A.Yu., On the Stability of Solutions for Autonomous Vazhevski Systems with Delays, Ukr. Mat. Zh., 1983, vol. 35, no. 5, pp. 574–579.

    MathSciNet  Google Scholar 

  16. D’eri, I. and Pertsev, N.V., On the Stability of Equilibrium Points for Functional-Differential Equations with Delays That Possess the Mixed Monotonicity Property, Dokl. Akad. Nauk SSSR, 1987, vol. 297, no. 1, pp. 23–25.

    Google Scholar 

  17. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1966. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.

    Google Scholar 

  18. Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equations, New York: McGraw-Hill, 1955.

    Google Scholar 

  19. D’yakonov, V.P., Matlab 6/6.1/6.5 + Simulink 4/5 v matematike i modelirovanii. Polnoe rukovodstvo pol’zovatelya (Matlab 6/6.1/6.5 + Simulink 4/5 in Mathematics and Modeling. A Complete User’s Guide), Moscow: SOLON-Press, 2003.

    Google Scholar 

  20. Romanovskii, Yu.M., Stepanova, N.V., and Chernavskii, D.S., Matematicheskaya biofizika (Mathematical Biophysics), Moscow: Nauka, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.V. Pertsev, G.E. Tsaregorodtseva, 2011, published in Avtomatika i Telemekhanika, 2011, No. 1, pp. 141–153.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertsev, N.V., Tsaregorodtseva, G.E. Modeling population dynamics under the influence of harmful substances on the individual reproduction process. Autom Remote Control 72, 129–140 (2011). https://doi.org/10.1134/S0005117911010115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117911010115

Keywords

Navigation