Skip to main content
Log in

Classification of Boolean functions by the invariants of their matrix representation

  • Discrete Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A variant of matrix representation for Boolean functions is designed such that these functions can be classified by matrix invariants. By way of example, the Deutsch problem is solved to illustrate the advantages of this classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooke, D.J. and Bez, H.E., Computer Mathematics, New York: Cambridge Univ. Press, 1984. Translated under the title Komp’yuternaya matematika, Moscow: Nauka, 1990.

    Google Scholar 

  2. Zakrevskii, A.D. and Toropov, N.R., Polinomial’naya realizatsiya chastichnykh bulevykh funktsii i sistem (Polynomial Realization of Partial Boolean Functions and Systems), Moscow: Editorial URSS, 2003.

    Google Scholar 

  3. Peterson, J.L., Petri Net Theory and Modeling of Systems, New York: Prentice-Hall, 1981. Translated under the title Teoriya setei Petri i modelirovanie sistem, Moscow: Mir, 1984.

    Google Scholar 

  4. Calingaert, P., Switch Function Canonical Forms Based on Commutative and Associative Binary Operations, Commun. Electron., 1961, vol. 80, no. 52, pp. 118–121.

    Google Scholar 

  5. Fin’ko, O.A., Realization of Large-Dimensional Systems of Boolean Functions by Modular Arithmetical Methods, Avtom. Telemekh., 2004, no. 6, pp. 37–60.

  6. Shmerko, V.P., Malyugin’s Theorems: A New Interpretation in Logic Control, VLSI, and Structural Data for New Technologies, Avtom. Telemekh., 2004, no. 6, pp. 61–83.

  7. Zakrevskii, A.D., Algorithms for Designing Polynomials Realizing Weakly-Defined Boolean Functions and Systems, Avtom. Telemekh., 2004, no. 6, pp. 158–176.

  8. Malyugin, V.D., Parallel’nye logicheskie vychisleniya posredstvom arifmeticheskikh polinomov (Parallel Logical Computation through Arithmetical Polynomials), Moscow: Nauka, 1997.

    Google Scholar 

  9. Valiev, K.A. and Kokin, A.A., Kvantovye komp’yutery: nadezhdy i real’nost’ (Quantum Computers: Hope and Reality), Moscow: Regulyarnaya i Khaoticheskaya Dinamika, 2002.

    Google Scholar 

  10. Bouwmeester, D., Ekert, A.K., and Zeilinger, A., The Physics of Quantum Information, Berlin: Springer, 2000. Translated under the title Fizika kvantovoi informatsii, Moscow: Postmarket, 2002.

    Google Scholar 

  11. Deutsch, D., Quantum Theory, the Church—Turing Principle and the Universal Quantum Computer, Proc. Roy. Soc. London, 1985, vol. A400, no. 1818, pp. 97–117.

    MathSciNet  Google Scholar 

  12. Deutsch, D. and Jozsa, R., Rapid Solution of Problems by Quantum Computation, Proc. Roy. Soc. London, 1992, vol. A439, no. 1907, pp. 553–558.

    MathSciNet  Google Scholar 

  13. Dmitriev, A.S. and Panas, A.I., Dinamicheskii khaos: novye nositeli informatsii dlya sistem svyazi (Dynamic Chaos: New Information Carriers for Communication Systems), Moscow: Fizmatlit, 2002.

    Google Scholar 

  14. Golovina, L.I., Lineinaya algebra i nekotorye ee prilozheniya (Linear Algebra and Its Application), Moscow: Nauka, 1985.

    Google Scholar 

  15. Dubrovin, B.A., Novikov, S.P., and Fomenko, A.T., Sovremennaya geometriya: metody i prilozhemiya (Modern Geometry: Methods and Applications), Moscow: Nauka, 1986.

    Google Scholar 

  16. Sing, D.L., Klassicheskaya dinamika (Classical Dynamics), Moscow: Fizmatlit, 1963.

    Google Scholar 

  17. Gibson, W.M. and Pollard, B.R., Symmetry Principles in Elementary Particle Physics, New York: Cambridge Univ. Press, 1976. Translated under the title Printsipy simmetrii v fizike elementarnykh chastits, Moscow: Atomizdat, 1979.

    Google Scholar 

  18. Berezin, A.V., Kurochkin, Yu.A., and Tolmachev, E.A., Kvaterniony v relyativistskoi fizike (Quarternions in Relativistic Physics), Minsk: Nauka i Tekhnika, 1989.

    Google Scholar 

  19. Bogolyubov, N.N. and Shirkov, D.V., Kvantovye polya (Quantum Fields), Moscow: Nauka, 1993.

    Google Scholar 

  20. Lyakhovskii, V.D. and Bolokhov, A.A., Gruppy simmetrii i elementarnye chastitsy (Symmetry Groups and Elementary Particles), Moscow: Editorial URSS, 2002.

    Google Scholar 

  21. Aminov, L.K., Teoriya simmetrii (Theory of Symmetry), Moscow: Inst. Komp. Issl., 2002.

    Google Scholar 

  22. Stratonovich, R.L., Teoriya informatsii (Information Theory), Moscow: Sovetskoe Radio, 1975.

    Google Scholar 

  23. Temnikov, F.E., Afonin, V.A., and Dmitriev, V.I., Teoreticheskie osnovy informatsionnoi tekhniki (Theoretical Principles of Information Technology), Moscow: Energiya, 1979.

    Google Scholar 

  24. Kolpakov, A.A. and Latypov, R.Kh., Approximate Algorithms for Minimization of Binary Decision Diagrams Based on Linear Transformations of Variables, Avtom. Telemekh., 2004, no. 6, pp. 112–128.

  25. Kuz’min, V.B. and Travkin, S.I., Theory of Fuzzy Sets in Control and Principles of Fuzzy Processors, Avtom. Telemekh., 1992, no. 11, pp. 3–36.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.B. Lapshin, 2006, published in Avtomatika i Telemekhanika, 2006, No. 7, pp. 95–103.

This paper was recommended for publication by O.P. Kuznetsov, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapshin, A.B. Classification of Boolean functions by the invariants of their matrix representation. Autom Remote Control 67, 1100–1107 (2006). https://doi.org/10.1134/S0005117906070095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117906070095

PACS number

Navigation