Skip to main content
Log in

The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This review is devoted to the analysis and systematization of modern data on the participation of endophytic plant growth-promoting (PGP) bacteria in the regulation of growth, development, yield formation, and stress resistance of cultivated plants, mainly spring wheat as the main bread crop. The present data on the interaction of plants with PGP bacteria under normal and drought conditions are described. Particular attention is paid to the molecular mechanisms of regulation of plant metabolism by PGP bacteria, as well as their role in reducing the negative effects of drought, achieved by modulating various processes in plants, for example, improving the supply of moisture and mineral nutrients, and activating the antioxidant and osmoprotective plant systems. A key role in the adaptation and resistance/tolerance of plants caused by PGP bacteria is played by their ability to produce various metabolites with the properties of biologically active substances, including substances with antimicrobial and hormonal activity, enzymes and other compounds. Information about the endophytic microbiome of wheat is given and the elucidation of its role and functions in the plant stress response and adaptation that are necessary for the development of effective and safe strategies for their practical application in order to maximize the adaptation and productive potential of wheat under changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Asseng, S., Martre, P., Maiorano, A., Rötter, R.P., O’Leary, G.J., Fitzgerald, G.J., et al., Global Change Biol., 2019, vol. 25, no. 1, pp. 155–173. https://doi.org/10.1111/gcb.14481

    Article  Google Scholar 

  2. Pequeno, D.N., Hernandez-Ochoa, I.M., Reynolds, M., Sonder, K., Molero Milan, A., Robertson, R.D., et al., Environ. Res. Lett., 2021, vol. 16, no. 5, p. 054070. https://doi.org/10.1088/1748-9326/abd970

    Article  CAS  Google Scholar 

  3. Shakirova, F.M., Avalbaev, A.M., Bezrukova, M.V., Fatkhutdinova, R.A., Maslennikova, D.R., Yuldashev, R.A., and Lastochkina, O.V., in Phytohormones and Abiotic Stress Tolerance in Plants, Khan, N., Nazar, R., Iqbal, N., and Anjum, N., Eds., Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-25829-9_9

  4. Kosova, A., Varma, A., and Choudhary, D.K., Agric. Res., 2015, vol. 4, no. 1, pp. 31–41. https://doi.org/10.3390/ijms160920913

    Article  CAS  Google Scholar 

  5. Food and Agriculture Organization of the United Nations (FAO), 2016. http://www.fao.org/3/a-i6030e.pdf.

  6. Goswami, M. and Deka, S., Pedosphere, 2020, vol. 30, no. 1, pp. 40–61. https://doi.org/10.1016/S1002-0160(19)60839-8

    Article  CAS  Google Scholar 

  7. United State Department of Agriculture. Foreign Agricultural Service, Global Market Analysis: International Production Assessment Division (IPAD), 2020. https://ipad.fas.usda.gov/.

  8. Ehrlich, P.R. and Wilson, E.O., Science, 1991, vol. 253, no. 5021, pp. 758–762. https://doi.org/10.1126/science.253.5021.758

    Article  CAS  PubMed  Google Scholar 

  9. Thrupp, L.A., Int. Aff., 2000, vol. 76, no. 2, pp. 265–281. https://doi.org/10.1111/1468-2346.00133

    Article  CAS  PubMed  Google Scholar 

  10. Galindo, F.S., Teixeira, FilhoM.C.M., Buzetti, S., Rodrigues, W.L., Santini, J.M.K., and Alves, C.J., Acta Agric. Scand. Soil Plant Sci., 2019, vol. 69, pp. 606–617. https://doi.org/10.1080/09064710.2019.1628293

    Article  Google Scholar 

  11. Dmytryk, A., Michalak, I., Wilk, R., Chojnacka, K., Gorecka, H., and Gorecki, H, Waste Biomass Valori, 2015, vol. 6, pp. 441–448. https://doi.org/10.1007/s12649-015-9363-6

    Article  CAS  Google Scholar 

  12. Lutts, S., Benincasa, P., Wojtyla, Ł., Kubala, S., Pace, R., Lechowska, K., Quinet, M., and Garnczarska, M., in Seed Priming: New Comprehensive Approaches for an Old Empirical Technique, Araujo, S. and Balestrazzi, A., Eds., London, UK: IntechOpen, 2016.https://doi.org/10.5772/64420

  13. Seifikalhor, M., Hassani, S.B., and Aliniaeifard, S., J. Plant Growth Regul., 2020, vol. 39, pp. 1009–1021. https://doi.org/10.1007/s00344-019-10038-7

    Article  CAS  Google Scholar 

  14. Gebeyaw, M., Int. J. Appl. Agric. Sci., 2020, vol. 6, no. 6, pp. 185–190. https://doi.org/10.11648/j.ijaas.20200606.14

    Article  Google Scholar 

  15. Singh, S., Singh, U.B., Malaviya, D., Paul, S., Sahu, P.K., Trivedi, M., Paul, D., and Saxena, A.K., Int. J. Environ. Res. Public Health, 2020, vol. 17, p. 1396. https://doi.org/10.3390/ijerph17041396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lastochkina, O.V., Aliniaeifard, S., Seifikalhor, M., Yuldashev, R., Pusenkova, L., and Garipova, S., in Wheat Production in Changing Environments, Hasanuzzaman, M., Nahar, K., Hossain, M., Eds., Singapore: Springer, 2019, pp. 579–614. https://doi.org/10.1007/978-981-13-6883-7_23

  17. Conrath, U., Beckers, G.J.M., Langenbach, C.J.G., and Jaskiewicz, M.R., Annu. Rev. Phytopathol., 2015, vol. 53, pp. 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132

    Article  CAS  PubMed  Google Scholar 

  18. Pastor, V., Luna, E., Mauch-Mani, B., Ton, J., and Flors, V., Environ. Exp. Bot., 2013, vol. 94, pp. 45–56. https://doi.org/10.1016/j.envexpbot.2012.02.013

    Article  CAS  Google Scholar 

  19. Balmer, A., Pastor, V., Gamir, J., Flors, V., and Mauch-Mani, B., Trends Plant Sci., 2015, vol. 20, pp. 443–452. https://doi.org/10.1016/j.tplants.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  20. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., and Kloepper, J.W., Can. J. Microbiol., 1997, vol. 43, no. 10, pp. 895–914. https://doi.org/10.1139/m97-131

    Article  CAS  Google Scholar 

  21. Sood, G., Kaushal, R., and Sharma, M., Vegetos, 2020, vol. 33, no. 4, pp. 782–792. https://doi.org/10.1007/s42535-020-00149-y

    Article  Google Scholar 

  22. Van Loon, L.C., Eur. J. Plant Pathol., 2007, vol. 119, pp. 243–254. https://doi.org/10.1007/978-1-4020-6776-1_2

    Article  CAS  Google Scholar 

  23. Akram, W., Anjum, T., Ali, B., and Ahmad, A., Int. J. Agric. Biol., 2013, vol. 15, no. 6, pp. 1289–1294.

    Google Scholar 

  24. Maksimov, I.V., Veselova, S.V., Nuzhnaya, T.V., Sarvarova, E.R., and Khairullin, R.M., Russ. J. Plant Physiol., 2015, vol. 62, no. 6, pp. 715–726. https://doi.org/10.1134/S1021443715060114

    Article  CAS  Google Scholar 

  25. Ma, Y., in Plant–Microbe Interactions in Agro-ecological Perspectives, Singh, D., Singh, H., and Prabha, R., Eds., Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-6593-4_4

  26. Dimkpa, C., Weinand, T., and Asch, F., Plant, Cell Environ., 2009, vol. 32, no. 12, pp. 1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

    Article  CAS  PubMed  Google Scholar 

  27. Abdel-Rahman, S., Abdel-Kader, A.A.S., and Khalil, S.E., Nat. Sci., 2011, vol. 9, pp. 31–36.

    Google Scholar 

  28. Baez-Rogelio, A., Morales-Garcia, Y.E., Quintero- Hernández, V., and Muñoz-Rojas, J., Microb. Biotechnol., 2016, vol. 10, no. 1, pp. 19–21. https://doi.org/10.1111/1751-7915.12448

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barnawal, D., Bharti, N., Pandey, S.S., Pandey, A., Chanotiya, C.S., and Kalra, A., Physiol. Plant., 2017, vol. 161, no. 4, pp. 502–514. https://doi.org/10.1111/ppl.12614

    Article  CAS  PubMed  Google Scholar 

  30. Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z.K., Khan, A.L., Khan, A., and AL-Harrasi, A., Microbiol. Res., 2018, vol. 209, pp. 21–32. https://doi.org/10.1016/j.micres.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  31. Singh, M. and Tiwari, N., Comm. Integr. Biol., 2021, vol. 14, no. 1, pp. 136–150. https://doi.org/10.1080/19420889.2021.1937839

    Article  CAS  Google Scholar 

  32. Arzanesh, M.H., Alikhani, H.A., Khavazi, K., Rahimian, H.A., and Miransari, M., J. Microbiol. Biotechnol., 2011, vol. 27, no. 2, pp. 197–205. https://doi.org/10.1007/s11274-010-0444-1

    Article  CAS  Google Scholar 

  33. Cherif, H., Marasco, R., Rolli, E., Ferjani, R., Fusi, M., Soussi, A., et al., Environ. Microbiol. Rep., vol. 7, no. 4, pp. 668–678. https://doi.org/10.1111/1758-2229.12304

  34. Amna, S., Din, Y., Sarfraz, B., Xia, Y., Kamran, M.A., Javed, M.T., et al., Ecol. Toxicol. Environ. Saf., 2019, vol. 183, p. 109466. https://doi.org/10.1016/j.ecoenv.2019.109466

    Article  CAS  Google Scholar 

  35. Kasim, W.A., Osman, M.E.H., Omar, M.N., and Salama, S., Bull. Natl. Res. Cent., 2021, vol. 45, no. 95, pp. 1–14. https://doi.org/10.1186/s42269-021-00546-6

    Article  Google Scholar 

  36. Rashid, U., Yasmin, H., Hassan, M.N., Naz, R., Nosheen, A., Sajjad, M., et al., Plant. Cell. Rep., vol. 41, pp. 1–21. https://doi.org/10.1007/s00299-020-02640-x

  37. Compant, S., Samad, A., Faist, H., and Sessitsch, A., J. Adv. Res., 2019, vol. 19, pp. 29–37. https://doi.org/10.1016/j.jare.2019.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rana, K.L., Kour, D., Kaur, T., Sheikh, I., Yadav, A.N., Kumar, V., et al., Proc. Natl. Acad. Sci. India, Sect. B: Biol. Sci., 2020, vol. 90, no. 5, pp. 969–979. https://doi.org/10.1007/s40011-020-01168-0

    Article  CAS  Google Scholar 

  39. Kavamura, V.N., Mendes, R., Bargaz, A., and Mauchline, T.H., Comput. Struct. Biotechnol. J., 2021, vol. 19, pp. 1200–1213. https://doi.org/10.1016/j.csbj.2021.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pandey, P.K., Singh, M.C., Singh, S.S., Singh, A.K., Kumar, M., Pathak, M.M., et al., Int. J. Curr. Microbiol. App. Sci., 2017, vol. 6, no. 2, pp. 11–21. https://doi.org/10.20546/ijcmas.2017.602.002

    Article  CAS  Google Scholar 

  41. Yang, J., Kloepper, J.W., and Ryu, C.M., Trend. Plant. Sci., 2009, vol. 14, no. 1, pp. 1–4. https://doi.org/10.1016/j.tplants.2008.10.004

    Article  CAS  Google Scholar 

  42. Bokhari, A., Essack, M., Lafi, F.F., Andres-Barrao, C., Jalal, R., Alamoudi, S., et al., Sci. Rep., 2019, vol. 9, p. 18154. https://doi.org/10.1038/s41598-019-54685-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bukhat, S., Imran, A., Javaid, S., Shahid, M., Majeed, A., and Naqqash, T., Microbiol. Res., 2020, vol. 238, p. 126486. https://doi.org/10.1016/j.micres.2020.126486

    Article  CAS  PubMed  Google Scholar 

  44. Lastochkina, O.V., Baymiev, An., Shayahmetova, A., Garshina, D., Koryakov, I., Shpirnaya, I., et al., Plants, 2020, vol. 9, no. 1, p. 76. https://doi.org/10.3390/plants9010076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vasil'eva, E. N., Akhtemova, G.A., Zhukov, V.A., and Tikhonovich, I.A., Ekol. Genet., 2019. V. 17. № 1. P. 19–32. https://doi.org/10.17816/ecogen17119-32

    Article  Google Scholar 

  46. Žiarovská, J., Medo, J., Kysel, M., Zamiešková, L., and Kačániová, M., Plants, 2020, vol. 9, no. 2, p. 266. https://doi.org/10.3390/plants9020266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kazi, N., Deaker, R., Wilson, N., Muhammad, K., and Trethowan, R., Field Crops Res., 2016, vol. 196, pp. 368–378. https://doi.org/10.1016/j.fcr.2016.07.012

    Article  Google Scholar 

  48. Schlemper, T.R., Dimitrov, M.R., Gutierrez, F.A.S., van Veen, J.A., Silveira, A.P., and Kuramae, E.E., Peer J., 2018, vol. 6, p. e5346. https://doi.org/10.7717/peerj.5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lastochkina, O.V., Garshina, D., Ivanov, S., Yuldashev, R., Khafizova, R., Allagulova, Ch., et al., Plants, 2020, vol. 9, no. 12, p. 1810. https://doi.org/10.3390/plants9121810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. El-Megeed, A., Fayrouz, H., and Mohiy, M., Egypt. J. Bot., 2022, vol. 62, no. 1, pp. 275–290.

    Article  Google Scholar 

  51. Ishak, Z., Mohd Iswadi, M.K., Russman Nizam, A.H., Ahmad Kamil, M.J., Ernie Eileen, R.R., Wan Syaidatul, A., and Ainon, H., Malays. Cocoa J., 2016, vol. 9, no. 1, pp. 127–133.

    Google Scholar 

  52. Saikia, J., Sarma, R.K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V.K., and Saikia, R., Sci. Rep., vol. 8, no. 1, p. 3560. https://doi.org/10.1038/s41598-018-21921-w

  53. Boleta, E.H.M., Galindo, F.S., Jalal, A., Santini, J.M.K., Rodrigues, W.L., Lima, B.H.D., et al., Front. Sustain. Food Syst., 2020, vol. 4, p. 607262. https://doi.org/10.3389/fsufs.2020.607262

    Article  Google Scholar 

  54. Naqqash, T., Fatima, M., Rehman-ur-Saif, Bukhat, S., Shahid, M., Shabir, C., et al., J. Plant. Growth. Regul., 2021, pp. 1–15. https://doi.org/10.1007/s00344-021-10519-8

  55. Fedorenko, V.F., Zavalina, A.A., and Milashchenko, N.Z., Nauchnye osnovy proizvodstva vysokokachestvennogo zerna pshenitsy (Scientific Basis for the Production of High-Quality Wheat Grain), Moscow: FGBNU Rosinformagrotekh, 2018. https://doi.org/10.25930/skc8-gc14

  56. Di Benedetto, N.A., Corbo, M.R., Campaniello, D., Cataldi, M.P., Bevilacqua, A., Sinigaglia, M., and Flagella, Z., AIMS Microbiol., 2017, vol. 3, no. 3, pp. 413–434. https://doi.org/10.3934/microbiol.2017.3.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lastochkina, O., Pusenkova, L., Yuldashev, R., Yuldashev, R., Babaev, M., Garipova, S., et al., Plant. Physiol. Biochem., 2017, vol. 121, pp. 80–88.

    Article  CAS  PubMed  Google Scholar 

  58. Pishchik, V.N., Vorob’ev, N.I., Moiseev, K.G., Sviridova, O.V., and Surin, V.G., Pochvovedenie, 2015, no. 1, pp. 87–94. https://doi.org/10.7868/S0032180X1501013X

  59. Fukami, J., Nogueira, M.A., Araujo, R.S., and Hungria, M., AMB Express, 2016, vol. 6, no. 3, pp. 3–16. https://doi.org/10.1186/s13568-015-0171-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fukami, J., Ollero, F.J., Megias, M., and Hungria, M., AMB Express, 2017, vol. 7, pp. 153–163. https://doi.org/10.1186/s13568-017-0453-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Galindo, F.S., Teixeira, FilhoM.C.M., Buzetti, S., Santin, J.M.K., Alves, C.J., and Ludkiewicz, M.G.Z., Res. Agropec. Bras., 2017, vol. 52, no. 9, pp. 794–805.

    Article  Google Scholar 

  62. Galindo, F.S., Teixeira, FilhoM.C.M., Buzetti, S., Santini, J.M., Montaniri, R., Freitas, L.A., and Rodrigues, W.L., Commun. Soil Sci. Plant Anal., 2019, vol. 50, pp. 2429–2441. https://doi.org/10.1080/00103624.2019.1667369

    Article  CAS  Google Scholar 

  63. Ardakani, M.R., Mazaheri, D., Mafakheri, S., and Moghaddam, A., Physiol. Mol. Biol. Plants, 2011, vol. 17, no. 2, pp. 181–192. https://doi.org/10.1007/s12298-011-0065-7

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rodríguez, H., Fraga, R., Gonzalez, T., and Bashan, Y., Plant Soil, 2006, vol. 287, pp. 15–21. https://doi.org/10.1007/s11104-006-9056-9

    Article  CAS  Google Scholar 

  65. Karimzadeh, J., Alikhani, H.A., Etesami, H., and Pourbabaei, A.A., J. Plant. Growth. Regul., 2021, vol. 40, no. 1, pp. 162–178. https://doi.org/10.1007/s00344-020-10087-3

    Article  CAS  Google Scholar 

  66. Scanlan, C.A., Bell, R.W., and Brennan, R.F., Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertiliser, Field Crops Res., 2015, vol. 178, pp. 125–134. https://doi.org/10.1016/j.fcr.2015.03.019

    Article  Google Scholar 

  67. Chandra, D., Srivastava, R., Gupta, V.V.S.R., Franco, C.M., Paasricha, N., Saifi, S.K., and Sharma, A.K., Plant Soil., 2019, vol. 441, nos. 1–2, pp. 261–281. https://doi.org/10.1007/s11104-019-04115-9

    Article  CAS  Google Scholar 

  68. Zloch, M., Thiem, D., Gadzala-Kopciuch, R., and Hrynkiewicz, K., Chemosphere, 2016, vol. 156, pp. 312–325. https://doi.org/10.1016/j.chemosphere.2016.04.130

    Article  CAS  PubMed  Google Scholar 

  69. Sadeghi, A., Karimi, E., Dahaji, P.A., Javid, M.G., Dalvand, Y., and Askari, H., World. J. Microbiol. Biotechnol., 2012, vol. 28, no. 4, pp. 1503–1509. https://doi.org/10.1007/s11274-011-0952-7

    Article  CAS  PubMed  Google Scholar 

  70. Saha, M., Sarkar, S., Sarkar, B., Sharma, B.K., Bhattacharjee, S., and Tribedi, P., Environ. Sci. Pollut. Res., 2016, vol. 23, no. 5, pp. 3984–3999. https://doi.org/10.1007/s11356-015-4294-0

    Article  CAS  Google Scholar 

  71. Albelda-Berenguer, M., Monachon, M., and Joseph, E., Adv. Appl. Microbiol., 2019, vol. 106, pp. 193–225. https://doi.org/10.1016/bs.aambs.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  72. Shakirova, F.M., Nespetsificheskaya ustoichivost’ rastenii k stressovym faktoram i ee regulyatsiya (Nonspecific Resistance of Plants to Stress Factors and Its Regulation), Ufa: Gilem, 2001.

  73. Sgroy, V., Cassan, F., Masciarelli, O.F., Del Papa, M.F., Lagares, A., and Luna, V., Appl. Microbiol. Biotechnol., 2009, vol. 85, no. 2, pp. 371–381. https://doi.org/10.1007/s00253-009-2116-3

    Article  CAS  PubMed  Google Scholar 

  74. Kudoyarova, G.R., Kurdish, I.K., and Melent’ev, A.I., Izv. UfNTs RAN, 2011, nos. 3–4, pp. 5–15.

  75. Pankievicz, V.C.S., Amaral, F.P., Santos, K.F.D.N., Agtuca, B., Xu, Y., Schueller, M.J., and Ferrieri, R.A., Thu. Plant. J., 2015, vol. 81, no. 6, pp. 907–919. https://doi.org/10.1111/tpj.12777

    Article  CAS  Google Scholar 

  76. Wang, C.J., Yang, W., Wang, C.J., Gu, C., Niu, D.D., Liu, H.X., and Guo, J.H., PLoS One, 2012, vol. 7, no. 12, p. e52565. https://doi.org/10.1371/journal.pone.0052565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, L. and Ruan, Y.L., Front. Plant Sci., 2013, vol. 4, p. 163. https://doi.org/10.3389/fpls.2013.00163

    Article  PubMed  PubMed Central  Google Scholar 

  78. Poupin, M.J., Greve, M., Carmona, V., and Pinedo, I., Front. Plant Sci., 2016, vol. 7, p. 492. https://doi.org/10.3389/fpls.2016.00492

    Article  PubMed  PubMed Central  Google Scholar 

  79. Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A., and Shahid, M.A., Agronomy, 2020, vol. 10, no. 11, p. 1683. https://doi.org/10.3390/agronomy10111683

    Article  Google Scholar 

  80. Egamberdieva, D. and Kucharova, Z., Biol. Fertil. Soils, 2009, vol. 45, no. 6, pp. 563–571. https://doi.org/10.1007/s00374-009-0366-y

    Article  Google Scholar 

  81. Creus, C.M., Sueldo, R.J., and Barassi, C.A., Can. J. Bot., 2004, vol. 82, no. 2, pp. 273–281. https://doi.org/10.1139/b03-119

    Article  Google Scholar 

  82. El-Akhdar, I.A., Elshikh, M., Allam, N.G., Kamal, F., Abou-Shanab, R., and Staehelin, C., Environ. Biodivers. Soil Secur., 2019, vol. 3, pp. 15–17. https://doi.org/10.21608/jenvbs.2019.16428.1069

    Article  Google Scholar 

  83. Ali, S. and Khan, N., Microbiol. Res., 2021, vol. 249, p. 126771. https://doi.org/10.1016/j.micres.2021.126771

    Article  CAS  PubMed  Google Scholar 

  84. Glick, B.R., Scientifica, 2012, p. 963401. https://doi.org/10.6064/2012/963401

  85. Martynenko, E.V. and Arkhipova, T.N., Agrokhimiya, 2010, no. 8, pp. 35–42.

  86. Xu, J., Li, X., and Luo, L., Appl. Environ. Microbiol., 2012, vol. 78, no. 22, pp. 8056–8061. https://doi.org/10.1128/AEM.01276-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Egorshina, A.A., Khairullin, R.M., Sakhabutdinova, A.R., and Luk’yantsev, M.A., Russ. J. Plant Physiol., 2012, vol. 59, no. 1, p. 148.

    Article  Google Scholar 

  88. Tsukanova, K.A., Meyer, J.J.M., and Bibikova, T.N., S. Afr. J. Bot., 2017, vol. 113, pp. 91–102. https://doi.org/10.1016/j.sajb.2017.07.007

    Article  CAS  Google Scholar 

  89. Nett, R.S., Montanares, M., Marcassa, A., Lu, X., Nagel, R., Charles, T.C., and Peters, R.J., Nat. Chem. Biol., 2017, vol. 13, no. 1, pp. 69–74. https://doi.org/10.1038/nchembio.2232

    Article  CAS  PubMed  Google Scholar 

  90. Bastián, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R., and Bottini, R., Plant. Growth. Regul., 1998, vol. 24, no. 1, pp. 7–11. https://doi.org/10.1023/A:1005964031159

    Article  Google Scholar 

  91. Atzorn, R., Crozier, A., Wheeler, C.T., and Sandberg, G., Planta, 1988, vol. 175, no. 4, pp. 532–538. https://doi.org/10.1007/BF00393076

    Article  CAS  PubMed  Google Scholar 

  92. Khan, A.L., Waqas, M., Kang, S., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., and Lee, I.J., J. Microbiol., 2014, vol. 52, no. 8, pp. 689–695. https://doi.org/10.1007/s12275-014-4002-7

    Article  CAS  PubMed  Google Scholar 

  93. Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., and Guo, Z.F., Mol. Biol. Rep., vol. 39, no. 2, pp. 969–987. https://doi.org/10.1007/s11033-011-0823-1

  94. Cohen, A.C., Travaglia, C.N., Bottini, R., and Piccoli, P.N., Botany, 2009, vol. 87, no. 5, pp. 455–462. https://doi.org/10.1139/B09-023

    Article  CAS  Google Scholar 

  95. Bottini, R., Pontin, M., Berli, F.J., Moreno, D., Boccanlandro, H., and Piccoli, P.N., Physiol. Plant., 2015, vol. 153, no. 1, pp. 79–90. https://doi.org/10.1111/ppl.12221

    Article  CAS  PubMed  Google Scholar 

  96. Bresson, J., Varoquaux, F., Bontpart, T., Touraine, B., and Vile, D., New Phytol., 2013, vol. 200, no. 2, pp. 558–569. https://doi.org/10.1111/nph.12383

    Article  CAS  PubMed  Google Scholar 

  97. Park, J.W., Balaraju, K., Kim, J.W., Lee, S.W., and Park, K., Biol. Control., 2013, vol. 65, no. 2, pp. 246–257. https://doi.org/10.1016/j.biocontrol.2013.02.002

    Article  Google Scholar 

  98. Salomon, M.V., Bottini, R., de Souza, F.G.A., Cohen, A.C., Moreno, D., Gil, M., and Piccoli, P., Physiol. Plant., 2014, vol. 151, no. 4, pp. 359–374. https://doi.org/10.1111/ppl.12117

    Article  CAS  PubMed  Google Scholar 

  99. Shahzad, R., Khan, A.L., Saqib, B., Waqas, M., Kang, S.M., and Lee, I.J., Environ. Exp. Bot., 2017, vol. 136, pp. 68–77. https://doi.org/10.1016/j.envexpbot.2017.01.010

    Article  CAS  Google Scholar 

  100. Li, Y., Xu, S., Gao, J., Pan, S., and Wang, G., Plant Growth Regul., 2016, vol. 78, pp. 43–55. https://doi.org/10.1007/s10725-015-0073-7

    Article  CAS  Google Scholar 

  101. Naing, A.H., Maung, T.T., and Kim, C.K., Physiol. Plant., 2021, vol. 173, no. 4, pp. 1992–2012. https://doi.org/10.1111/ppl.13545

    Article  CAS  PubMed  Google Scholar 

  102. Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., and Abdala, G., Appl. Microbiol. Biotechnol., 2007, vol. 76, no. 5, pp. 1145–1152. https://doi.org/10.1007/s00253-007-1077-7

    Article  CAS  PubMed  Google Scholar 

  103. Chourdhary, D. and Johri, B., Microbiol. Res., 2009, vol. 164, no. 5, pp. 493–513. https://doi.org/10.1016/j.micres.2008.08.007

    Article  CAS  Google Scholar 

  104. Garcia-Gutierrez, L., Zeriouh, H., Romero, D., Cubero, J., de Vicente, A., and Perez-Garcia, A., Microbiol. Biotechnol., 2013, vol. 6, no. 3, pp. 264–274. https://doi.org/10.1111/1751-7915.12028

    Article  CAS  Google Scholar 

  105. Niu, D.D., Liu, H.X., Jiang, C.H., Jiang, C.H., Zhang, W.Z., Wang, Y.P., and Guo, J.H., Mol. Plant Microb. Interact., 2011, vol. 24, no. 5, pp. 533–542. https://doi.org/10.1094/MPMI-09-10-0213

    Article  CAS  Google Scholar 

  106. Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd Allah, E.F., and Hashem, A., FMC, 2017, vol. 8, p. 2104. https://doi.org/10.3389/fmicb.2017.02104

    Article  Google Scholar 

  107. Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M., Fatkhutdinova, R.A., and Fatkhutdinova, D.R., Plant. Sci., 2003, vol. 164, pp. 317–322. https://doi.org/10.1016/S0168-9452(02)00415-6

    Article  CAS  Google Scholar 

  108. Singh, U.P., Sarma, B.K., and Singh, D.P., Curr. Microbiol., 2003, vol. 46, no. 2, pp. 131–140. https://doi.org/10.1007/s00284-002-3834-2

    Article  CAS  PubMed  Google Scholar 

  109. Vlot, A.C., Dempsey, D.A., and Klessig, D.F., Annu. Rev. Phytopathol., 2009, vol. 47, pp. 177–206. https://doi.org/10.1146/annurev.phyto.050908.135202

    Article  CAS  PubMed  Google Scholar 

  110. Wu, L., Huang, Z., Li, X., Ma, L., Gu, Q., Wu, H., and Gao, X., Front. Microbiol., 2018, vol. 9, p. 847. https://doi.org/10.3389/fmicb.2018.00847

    Article  PubMed  PubMed Central  Google Scholar 

  111. Panpatte, D.G., Shukla, Y.M., Shelat, H.N., Vyas, R.V., and Jhala, Y.K., in Microorganisms for Green Revolution, Panpatte, D.G., Jhala, Y.K., Vyas, R.V., and Shelat, H.N., Eds., Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-6241-4

  112. Chiappero, J., Cappellari, L., Alderete, L.G.S., Palermo, T.B., and Banchio, E., Ind. Crop. Prod., 2019, vol. 139, p. 111553. https://doi.org/10.1016/j.indcrop.2019.111553

    Article  CAS  Google Scholar 

  113. Vaishnav, A., Varma, A., Tuteja, N., Choudhary, D.K., in Choudhary, D.K., Sharma, A.K., Agarwal, P., Varma, A., and Tuteja, N., Eds., Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-5553-9

  114. ALKahtani, M.D.F., Fouda, A., and Attia, K.A., Agronomy, 2020, vol. 10, no. 9, p. 1325. https://doi.org/10.3390/agronomy10091325

    Article  CAS  Google Scholar 

  115. Park, Y.S., Dutta, S., An, M., Raaijmakers, J.M., and Park, K., Biochem. Biophys. Res. Commun., 2015, vol. 461, no. 2, pp. 361–365. https://doi.org/10.1016/j.bbrc.2015.04.039

    Article  CAS  PubMed  Google Scholar 

  116. Tahir, H.A.S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., and Gao, X., Front. Microbiol., 2017, vol. 8, p. 171. https://doi.org/10.3389/fmicb.2017.00171

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lemfack, M.C., Nickel, J., Dunkel, M., Preissner, R., and Piechulla, B., Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 744–748. https://doi.org/10.1093/nar/gkt1250

    Article  CAS  Google Scholar 

  118. Bitas, V., Kim, H.S., Bennett, J.W., and Kang, S., Mol. Plant. Microbe. Interact., 2013, vol. 26, no. 8, pp. 835–843. https://doi.org/10.1094/MPMI-10-12-0249-CR

    Article  CAS  PubMed  Google Scholar 

  119. Audrain, B., Mohamed, A.F., Riu, Ch.-M., and Ghigo, J.-M., FEMS Microbiol. Rev., 2015, vol. 39, no. 2, pp. 222–233. https://doi.org/10.1093/femsre/fuu013

    Article  CAS  PubMed  Google Scholar 

  120. Niinemets, Ü., Trends Plant Sci., 2010, vol. 15, no. 3, pp. 145–153. https://doi.org/10.1016/j.tplants.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  121. Timmusk, S., El-Daim, AbdI., Copolovici, L., Copolovici, L., Tanilas, T., Kännaste, A., and Niinemets, U., PLoS One, 2014, vol. 9, no. 5, p. e96086. https://doi.org/10.1371/journal.pone.0096086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cho, S.M., Kang, B.R., Han, S.H., Anderson, A.J., Park, J.Y., Lee, Y.H., and Kim, Y., C, APS Publ., 2008, vol. 21, no. 8, pp. 1067–1075. https://doi.org/10.1094/MPMI-21-8-1067

  123. Bhattacharyya, D., Yu, S.M., and Lee, Y.H., Plant. Growth Regul., 2015, vol. 75, no. 1, pp. 297–306. https://doi.org/10.1007/s10725-014-9953-5

    Article  CAS  Google Scholar 

  124. Bhattacharyya, D. and Lee, Y.H., J. Plant. Physiol., 2017, vol. 214, pp. 64–73. https://doi.org/10.1016/j.jplph.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  125. Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M., and SkZ, A., Microbiol. Res., 2016, vol. 184, pp. 13–24. https://doi.org/10.1016/j.micres.2015.12.003

    Article  PubMed  Google Scholar 

  126. Chen, Y., Gozzi, R., Yan, F., and Chai, Y., ASM J., 2015, vol. 6, no. 3, p. e00392. https://doi.org/10.1128/mBio.00392-15

    Article  CAS  Google Scholar 

  127. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Pare, P.W., Plant Physiol., 2004, vol. 134, no. 3, pp. 1017–1026. https://doi.org/10.1104/pp.103.026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Raza, W., Wang, J., Wu, Y., Ling, N., Wei, Z., Huang, Q., and Shen, Q., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 17, pp. 7639–7650. https://doi.org/10.1007/s00253-016-7584-7

    Article  CAS  PubMed  Google Scholar 

  129. Vardharajula, S., Zulfikar, A.S., Grover, M., Reddy, G., and Bandi, V., J. Plant. Interact., 2011, vol. 6, no. 1, pp. 1–14. https://doi.org/10.1080/17429145.2010.535178

    Article  CAS  Google Scholar 

  130. Dakora, F.D., Matiru, V.N., and Kanu, A.S., Front. Plant Sci., 2015, vol. 6, p. 700. https://doi.org/10.3389/fpls.2015.00700

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tanaka, K., Cho, S.H., Lee, H., Pham, A.Q., Batek, J.M., Cui, S., and Stacey, G., J. Exp. Bot., 2015, vol. 66, no. 19, pp. 5727–5738. https://doi.org/10.1093/jxb/erv260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bramhachari, P.V., Nagaraju, G.P., and Kariali, E., in Role of Rhizospheric Microbes in Soil, Meena, V.S., Ed., Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-8402-7

  133. Talebi, AtoueiM., Pourbabaee, A.A., and Shorafa, M., Iran. J. Sci. Technol. Trans. A, 2019, vol. 43, no. 4, pp. 2725–2733. https://doi.org/10.1007/s40995-019-00753-x

    Article  Google Scholar 

  134. Alami, Y., Achouak, W., Marol., C., and Heulin, T., Appl. Environ. Microbiol., 2000, vol. 66, no. 8, pp. 3393–3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Awasthi, S., Srivastava, P., and Mishra, P.K., Agric. Res. Technol., 2017, vol. 8, no. 2, pp. 8–10. https://doi.org/10.19080/ARTOAJ.2017.08.555731

    Article  Google Scholar 

  136. Gontia-Mishra, I., Sapre, S., Sharma, A., and Tiwari, S., Plant Biol., 2016, vol. 18, no. 6, pp. 992–1000. https://doi.org/10.1111/plb.12505

    Article  CAS  PubMed  Google Scholar 

  137. Amellal, N., Burtin, G., Bartoli, F., and Heulin, T., App-l. Environ. Microbiol., 1998, vol. 64, no. 10, pp. 3740–3747. https://doi.org/10.1128/AEM.64.10.3740-3747.1998

    Article  CAS  Google Scholar 

  138. Subramanian, S. and Smith, D.L., Front. Plant. Sci., 2015, vol. 6, p. 909. https://doi.org/10.3389/fpls.2015.00909

    Article  PubMed  PubMed Central  Google Scholar 

  139. Global'nyi klimat i pochvennyi pokrov Rossii: proyavleniya zasukhi, mery preduprezhdeniya, bor’by, likvidatsiya posledstvii i adaptatsionnye meropriyatiya (sel’skoe i lesnoe khozyaistvo) (Global Climate and Soil Cover in Russia: Manifestations of Drought, Prevention Measures, Control, Elimination of Consequences and Adaptation Measures (Agriculture and Forestry)), Edel’geriev, Kh., Ed., Moscow: MBA, 2021.

  140. Hunt, E., Femia, F., Werrell, C., Christian, J.I., Otkin, J.A., Basara, J., and McGaughey, K., Weather Clim. Extremes, 2021, vol. 34, p. 100383. https://doi.org/10.1016/j.wace.2021.100383

    Article  Google Scholar 

  141. Okuyama, L.A., Federizzi, L.C., and Barbosa, N.J., F, Cienc. Rural, 2004, vol. 34, no. 6, pp. 1701–1708. https://doi.org/10.1590/S0103-84782004000600006

    Article  Google Scholar 

  142. Araus, J.L., Slafer, G.A., Royo, C., and Serret, M.D., Crit. Rev. Plant Sci., 2008, vol. 27, no. 6, pp. 377–412. https://doi.org/10.1080/07352680802467736

    Article  Google Scholar 

  143. Khan, M.Y., Zahir, Z.A., Asghar, H.N., and Waraich, E.A., Pak. J. Bot., 2017, vol. 49, no. 4, pp. 1541–1551.

    CAS  Google Scholar 

  144. Çakmakçı, R., Turan, M., Kıtır, N., Güneş, A., Nikerel, E., Özdemir, B.S., and Mokhtari, N.E.P., in Wheat Improvement, Management and Utilization, Wanyera, R. and Owuoche, J., Eds., London, UK: IntechOpen Limited, 2017. https://doi.org/10.5772/63694

  145. Chakraborty, U., Chakraborty, B.N., Chakraborty, A.P., and Dey, P.L., J. Microbiol. Biotechnol., 2013, vol. 29, no. 5, pp. 789–803. https://doi.org/10.1007/s11274-012-1234-8

    Article  CAS  Google Scholar 

  146. Alvarez, M.I., Sueldo, R.J., and Barassi, C.A., Cereal. Res. Commun., 1996, vol. 24, no. 1, pp. 101–107.

    Google Scholar 

  147. Hussain, M.B., Zahir, Z.A., Asghar, H.N., and Asghar, M., Int. J. Agric. Biol., 2014, vol. 16, pp. 3–13.

    CAS  Google Scholar 

  148. Chen, C., Xin, K., Liu, H., Cheng, J., Shen, X., Wang, Y., and Zhang, L., Sci. Rep., vol. 7, no. 1, p. 41564. https://doi.org/10.1038/srep41564

  149. Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Moënne-Loccoz, Y., Muller, D., and Prigent-Combaret, C., Front. Plant Sci., 2013, vol. 4, p. 356. https://doi.org/10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A.A., and Yang, X., Appl. Microbiol. Biotechnol., 2019, vol. 103, pp. 7385–7397. https://doi.org/10.1007/s00253-019-10045-4

    Article  CAS  PubMed  Google Scholar 

  151. Kasim, W.A., Osman, M.E., Omar, M.N., El-Daim, A., Islam, A., Bejai, S., and Meijer, J., J. Plant. Growth. Regul., 2013, vol. 32, pp. 122–130. https://doi.org/10.1007/s00344-012-9283-7

    Article  CAS  Google Scholar 

  152. El-Afry, M.M., Acta. Biol. Szeged., 2012, vol. 56, no. 2, pp. 165–174.

    Google Scholar 

  153. Pereyra, M.A., Garcia, P., Colabelli, M.N., Barassi, C.A., and Creus, C.M., Appl. Soil Ecol., 2012, vol. 53, pp. 94–97. https://doi.org/10.1016/j.apsoil.2011.11.007

    Article  Google Scholar 

  154. Furlan, F., Saatkamp, K., Volpiano, C.G., de Assis Franco, F., Santos, M.F., Vendruscolo, E.C.G., and Costa, A.C.T., Sci. Agrar., 2017, vol. 18, no. 2, pp. 104–113.

    Google Scholar 

  155. Yaghoubi Khanghahi, M.Y., Leoni, B., and Crecchio, C., Acta Physiol. Plant., 2021, vol. 43, p. 123. https://doi.org/10.1007/s11738-021-03289-z

    Article  CAS  Google Scholar 

  156. Naveed, M., Hussain, M.B., Zahir, Z.A., Mitter, B., and Sessitsch, A., Plant Growth Regul., 2014, vol. 73, no. 2, pp. 121–131. https://doi.org/10.1007/s10725-013-9874-8

    Article  CAS  Google Scholar 

  157. Nemati, A. and Sedghi, M., J. Crop Prod., 2022, vol. 13, no. 4, pp. 87–110. https://doi.org/10.22069/EJCP.2021.18408.2364

    Article  Google Scholar 

  158. Maslennikova, D. and Lastochkina, O., Plants, 2021, vol. 10, p. 2557. https://doi.org/10.3390/plants10122557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Merzlyak, M.N., Soros. Obraz. Zh. 1999, vol. 9, pp. 20–26.

    Google Scholar 

  160. Kolupaev, Yu.E., Karpets, Yu.V., Yastreb, T.O., and Lugovaya, A.A., Visn. Kharkiv. Nats. Agr. Univ., Ser. Biol. 2016, vol. 1, no. 37, pp. 42–62.

  161. Kaushal, M. and Wani, S.P., Agriculture. Ecosyst. Env, 2016, vol. 231, pp. 68–78. https://doi.org/10.1016/j.agee.2016.06.031

    Article  CAS  Google Scholar 

  162. Yarullina, D.R., Asafova, E.V., Kartunova, Yu.E., Ziyatdinova, G.K., and Il’inskaya, O.N., Appl. Biochem. Microbiol., 2014, vol. 50, no. 2, pp. 166–168. https://doi.org/10.1134/S0003683814020197

    Article  CAS  Google Scholar 

  163. Ullah, S. and Bano, A., Can. J. Microbiol., 2015, vol. 61, no. 4, pp. 307–313. https://doi.org/10.1139/cjm-2014-0668

    Article  CAS  PubMed  Google Scholar 

  164. Khalafallah, A.A. and Abo-Ghalia, H.H., J. Appl. Sci. Res., 2008, vol. 4, no. 5, pp. 559–569.

    CAS  Google Scholar 

  165. Chaves, M.M., Maroco, J.P., and Pereira, J.S., Funct. Plant Biol., 2003, vol. 30, no. 3, pp. 239–264. https://doi.org/10.1071/FP02076

    Article  CAS  PubMed  Google Scholar 

  166. Zhou, Q. and Yu, B.J., Russ. J. Plant Physiol., 2009, vol. 56, no. 5, pp. 678–687.

    Article  CAS  Google Scholar 

  167. Sandhya, V.D., Ali, S., Grover, M., Reddy, G., and Venkateswarlu, B., Plant. Growth. Regul., 2010, vol. 62, no. 1, pp. 21–30.

    Article  CAS  Google Scholar 

  168. Jogawat, A., in Molecular Plant Abiotic Stress: Biology and Biotechnology, Roychoudhury, A. and Tripathi, D.K., Eds., Willy, 2019, pp. 91–97. https://doi.org/10.1002/9781119463665

  169. Paul, D. and Nair, S., J. Basic. Microbiol., 2008, vol. 48, no. 5, pp. 378–384. https://doi.org/10.1002/jobm.200700365

    Article  CAS  PubMed  Google Scholar 

  170. Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R.Z., Khan, W., and Ali, Z., Sustainability, 2020, vol. 12, no. 21, p. 8876. https://doi.org/10.3390/su12218876

    Article  CAS  Google Scholar 

  171. Gusain, Y.S., Singh, U.S., and Sharma, A.K., Afr. J. Biotechnol., 2015, vol. 14, no. 9, pp. 764–773. https://doi.org/10.5897/AJB2015.14405

    Article  Google Scholar 

  172. Shintu, P.V. and Jayaram, K.M., Trop. Plant. Res., 2015, vol. 2, pp. 17–22.

    Google Scholar 

  173. Camaille, M., Fabre, N., Clément, C., and Ait Barka E., Microorganisms, 2021, vol. 9, no. 4, p. 687. https://doi.org/10.3390/microorganisms9040687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Suarez, R., Wong, A., Ramirez, M., Barraza, A., Orozco, M.D.C., Cevallos, M.A., and Iturriaga, G., Mol. Plant Microbe Interact., 2008, vol. 21, no. 7, pp. 958–966. https://doi.org/10.1094/MPMI-21-7-0958

    Article  CAS  PubMed  Google Scholar 

  175. Forni, C., Duca, D., and Glick, B.R., Plant Soil, 2017, vol. 410, nos. 1–2, pp. 335–356. https://doi.org/10.1007/s11104-016-3007-x

    Article  CAS  Google Scholar 

  176. Toju, H., Peay, K.G., and Yamamichi, M., Nat. Plant, 2018, vol. 4, pp. 247–257. https://doi.org/10.1038/s41477-018-0139-4

    Article  Google Scholar 

  177. Lahti, L., Shetty, S., Blake, T., and Salojarvi, J., Version, 2017, vol. 1, no. 5, p. 28.

    Google Scholar 

  178. Shade, A. and Stopnisek, N., Curr. Opin. Microbiol., 2019, vol. 49, pp. 50–58. https://doi.org/10.1016/j.mib.2019.09.008

    Article  PubMed  Google Scholar 

  179. Cernava, T., Erlacher, A., Soh, J., Sensen, C.W., Grube, M., and Berg, G., Microbiome, 2019, vol. 7, p. 13. https://doi.org/10.1186/s40168-019-0624-7

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kavamura, V.N., Robinson, R.J., Hayat, R., Clark, I.M., Hughes, D., Rossmann, M., and Auchline, T.H., Front. Microbiol., 2019, vol. 10, p. 2625. https://doi.org/10.3389/fmicb.2019.02625

    Article  PubMed  PubMed Central  Google Scholar 

  181. Simonin, M., Dasilva, C., Terzi, V., Ngonkeu, E.L., Diouf, D., Kane, A., et al., FEMS Microbiol. Ecol., 2020, vol. 96, no. 6. https://doi.org/10.1093/femsec/fiaa067

  182. Rossmann, M., Perez-Jaramillo, J.E., Kavamura, V.N., Chiaramonte, J.B., Dumack, K., Fiore-Donno, A.M., et al., FEMS Microbiol. Ecol., 2020, vol. 96, no. 4. https://doi.org/10.1093/femsec/fiaa032

  183. Douglas, A.J., Hug, L.A., and Katzenback, B.A., Microb. Ecol., 2020, vol. 81, pp. 78–92. https://doi.org/10.1007/s00248-020-01550-5

    Article  CAS  PubMed  Google Scholar 

  184. Risely, A., Okeanologiya, 2020, vol. 89, no. 7, pp. 1549–1558. https://doi.org/10.1111/1365-2656.13229

    Article  Google Scholar 

  185. Schlatter, D.C., Yin, C., Hulbert, S., and Paulitz, T., Appl. Environ. Microbiol., 2019, vol. 86, no. 5. https://doi.org/10.1128/AEM.02135-19

  186. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Verges, M.C.C., Charles, T., et al., Microbiome, 2020, vol. 8, no. 1, p. 103. https://doi.org/10.1186/s40168-020-00875-0

    Article  PubMed  PubMed Central  Google Scholar 

  187. Velázquez-Sepúlveda, I., Orozco-Mosqueda, M.C., Prieto-Barajas, C.M., and Santoyo, G., Phyton. Int. J. Exp. Bot., 2012, vol. 81, pp. 81–87.

    Google Scholar 

  188. Naz, I., Mirza, R.S., and Bano, A., J. Anim. Plant Sci., 2014, vol. 24, no. 4, pp. 1123–1134.

    Google Scholar 

  189. Kuźniar, A., Włodarczyk, K., Grządziel, J., Woźniak, M., Furtak, K., Gałązka, A., and Wolińska, A., Int. J. Mol. Sci., 2020, vol. 21, no. 13, p. 4634. https://doi.org/10.3390/ijms21134634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hone, H., Mann, R., Yang, G., Kaur, J., Tannenbaum, I., Li, T., Spangenberg, G., and Sawbridge, T., Sci Rep., vol. 11, p. 11916. https://doi.org/10.1038/s41598-021-91351-8

  191. Timmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., Danilas, T., and Nevo, E., PLoS One, 2011, vol. 6, no. 3, p. e17968. https://doi.org/10.1371/journal.pone.0017968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Safin, R.I., Karimova, L.Z., Nizamov, R.M., Valiev, A.R., Validov, S.Z., and Faizrakhmanov, D.I., Adv. Eng. Res., 2018, vol. 151, pp. 766–770. https://doi.org/10.2991/agrosmart-18.2018.143

    Article  Google Scholar 

Download references

Funding

The work was funded by the Russian Science Foundation, grant number 22-26-00076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Lastochkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lastochkina, O.V., Allagulova, C.R. The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review). Appl Biochem Microbiol 59, 14–32 (2023). https://doi.org/10.1134/S0003683823010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823010039

Keywords:

Navigation