Skip to main content
Log in

Influence of Resveratrol and Dihydroquercetin on Physiological and Biochemical Parameters of the Poly-Extremophilic Yeast Yarrowia lipolytica under Temperature Stress

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

First, the effects of the biologically active polyphenols resveratrol and dihydroquercetin (DHQ) on morpho-physiological parameters and the antioxidant status of polyextremophilic yeast Yarrowia lipolytica at optimal and elevated temperatures were studied. Cultivation in the presence of 30 μM resveratrol at the optimal temperature caused a twofold increase in superoxide dismutase activity. It was shown that cultivation at a high temperature and high DHQ concentration stimulated a decrease in the alternate respiration level. High resveratrol concentrations and low dihydroquercetin concentrations were shown to have an inhibitory effect on the survival rate of Y. lipolytica yeast cells, while no visible inhibition effect of yeast growth was recorded at the optimal growth temperature. Polyphenols were shown to have a moderate stimulatory effect on the oxygen absorption rate by yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Simioni, C., Zauli, G., Martelli, A.M., Vitale, M., Sacchetti, G., Gonelli, A., and Neri, L.M., Oncotarget, 2018, vol. 30, no. 9, pp. 17181–17198.

    Google Scholar 

  2. Perez-Vizcaino, F. and Fraga, C.G., Arch. Biochem. Biophys., 2018, vol. 646, pp. 107–112.

    Article  CAS  PubMed  Google Scholar 

  3. Akinwumi, B.C., Bordun, K.M., and Anderson, H.D., Int. J. Mol. Sci., 2018, vol. 19, no. 3. pii E792.

    Article  CAS  PubMed  Google Scholar 

  4. Tsai, H.-Y., Ho, C.-T., and Chen, Y.-K., J. Food Drug. Analysis, vol. 25, no. 1, pp. 134–141.

  5. Truong, V.L., Jun, M., and Jeong, W.S., Biofactors, 2018, vol. 44, no. 1, pp. 36–49.

    Article  CAS  PubMed  Google Scholar 

  6. Teplova, V.V., Isakova, E.P., Klyain, O.I., Dergacheva, D.I., Gessler, N.N., and Deryabina, Yu.I., Appl. Biochem. Microbiol., 2018, vol. 54, no. 3, pp. 221–237.

    Article  CAS  Google Scholar 

  7. Rimando, A.M., Kalt, W., Magee, J.B., Dewey, J., and Ballington, J.R., J. Agric. Food Chem., 2004, vol. 52, no. 15, pp. 4713–4719.

    Article  CAS  PubMed  Google Scholar 

  8. Renaud, S. and de Lorgeril, M., Lancet, 1992, vol. 20, no. 339 (8808), pp. 1523–1526.

  9. Zhang, Q., Bian, Y., Shi, Y., Zheng, S., Gu, X., Zhang, D., et al., Food Chem., 2015, vol. 179, no. 1, pp. 15–25.

    Article  CAS  PubMed  Google Scholar 

  10. Pereira, T.M.C., Fabio, Silva., Pimenta, F.S.P., Marcella, Lima., Porto, M.L.P., Baldo, M.P., Campagnaro, B.P., Gava, A.L., et al., Int. J. Mol. Sci., 2016, vol. 17, no. 8. e 1273. https://doi.org/10.3390/ijms17081273

  11. Caruana, M., Cauchi, R., and Vassallo, N., Front. Nutr., 2016, vol. 3. e 31. https://doi.org/10.3389/fnut.2016.00031

  12. Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D., and Borderie, D., Biochimie, 2012, vol. 94, no. 2, pp. 269–276.

    Article  CAS  PubMed  Google Scholar 

  13. Chan, M.M., Biochem. Pharmacol., 2002, vol. 63, no. 2, pp. 99–104.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, W.B., Lai, H.C., Hsueh, P.R., Chiou, R.Y., Lin, S.B., and Liaw, S.J., J. Med. Microbiol., 2006, vol. 55, no. 10, pp. 1313–1321.

    Article  CAS  PubMed  Google Scholar 

  15. Mahady, G.B. and Pendland, S.L., Am. J. Gasteroenterol., 2000, no. 95, p. 1849. https://doi.org/10.1111/j.1572-0241.2000.02146.x

  16. Mahady, G.B., Pendland, S.L., and Chadwick, L.R., Am. J. Gastroenterol., 2003, no. 98, pp. 1440–1441. https://doi.org/10.1111/j.1572-0241.2003.07513.x

  17. Bertelli, A.A., Ferrara, F., Diana, G., Fulgenzi, A., Corsi, M., Ponti, W., et al., Int. J. Tissue React., 1999, vol. 21, no. 4, pp. 93–104.

    CAS  PubMed  Google Scholar 

  18. Weidmann, A.E., Eur. J. Pharmacol., 2012, vol. 684, nos. 1–3, pp. 19–22.

    Article  CAS  PubMed  Google Scholar 

  19. Akinmoladun, A.C., Oladejo, C.O., Josiah, S.S., Famusiwa, C.D., Ojo, O.B., and Olaleye, M.T., Pathophysiology, 2018. pii S0928-4680(18)30063-4

  20. Chen, J., Sun, X., Xia, T., Mao, Q., and Zhong, L., Food Funct., 2018, vol. 9, no. 4, pp. 2341–2352.

    Article  CAS  PubMed  Google Scholar 

  21. Korystova, A.F., Kublik, L.N., Kim, Y.A., Levitman, M.K., Shaposhnikova, V.V., and Korystov, Y.N, Bull. Exp. Biol. Med., 2018, vol. 165, no. 3, pp. 360–363. https://doi.org/10.1007/s10517-018-4170-2

    Article  CAS  PubMed  Google Scholar 

  22. Haque, M.W., Bose, P., Siddique, M.U.M., Sunita, P., Lapenna, A., and Pattanayak, S.P., Biomed. Pharmacother., 2018, vol. 105, pp. 27–36.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, Y., Huang, W., Wang, J., Chen, Y., Huang, W., and Zhu, Y., Am. J. Transl. Res., 2018, vol. 10, no. 4, pp. 1205–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Galochkina, A.V., Zarubaev, V.V., Kiselev, O.I., Babkin, V.A., and Ostroukhova, L.A., Vopr. Virusol., 2016, vol. 61, no. 1, pp. 27–31.

    CAS  PubMed  Google Scholar 

  25. Wang, H.Q., Meng, S., Li, Z.R., Peng, Z.G., Han, Y.X., Guo, S.S., et al., J. Asian Nat. Prod. Res., 2013, vol. 15, no. 4, pp. 382–389.

    Article  CAS  PubMed  Google Scholar 

  26. Mishra, S., Singh, S., and Misra, K., Mycopathologia, 2017, vol. 182, nos. 11–12, pp. 953–965.

    Article  CAS  PubMed  Google Scholar 

  27. Sekova, V.Yu., Gessler, N.N., Isakova, E.P., Antipov, A.N., Dergacheva, D.I., Deryabina, Yu.I., et al., Appl. Biochem. Microbiol., 2015, vol. 51, no. 6, pp. 570–577.

    CAS  Google Scholar 

  28. Deryabina, Y., Isakova, E., Antipov, A., and Saris, N.E., J. Bioenerg. Biomembr., 2013, vol. 45, no. 5, pp. 491– 504.

    Article  CAS  PubMed  Google Scholar 

  29. Kostyuk, V.A., Potapovich, A.I., and Kovaleva, Zh.V., Vopr. Med. Khim., 1990, vol. 36, no. 2, pp. 88–91.

    CAS  Google Scholar 

  30. Medentsev, A.G., Arinbasarova, A.Y., and Akimenko, V.K., Biochemistry (Moscow), 1999, vol. 64, no. 11, pp. 1230–1243.

    CAS  PubMed  Google Scholar 

  31. Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., et al., Nature, 2006, vol. 444, no. 7117, pp. 337–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tili, E. and Michaille, J.J., Molecules, 2016, vol. 21, no. 9. pii E1263.

    Article  CAS  PubMed  Google Scholar 

  33. Gavrilas, L.I., Ionescu, C., Tudoran, O., Lisencu, C., Balacescu, O., and Miere, D., Nutrients, 2016, vol. 8, no. 10. pii E590.

    Article  CAS  PubMed  Google Scholar 

  34. Pinyaev, S.I. and Mel’nikova, N.A., Vestn. VGU, Ser.: Khim. Biol. Farm., 2016, no. 2, pp. 78–85.

  35. Ramos-Gomez, M., Olivares-Marin, I.K., Canizal-García, M., González-Hernández, J.C., Nava, G.M., and Madrigal-Perez, L.A., J. Bioenerg. Biomembr., 2017, vol. 49, no. 3, pp. 241–251.

    Article  CAS  PubMed  Google Scholar 

  36. Madrigal-Perez, L.A., Canizal-Garcia, M., González-Hernández, J.C., Reynoso-Camacho, R., Nava, G.M., and Ramos-Gomez, M., Yeast, 2016, vol. 33, no. 6, pp. 227–234.

    Article  CAS  PubMed  Google Scholar 

  37. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., et al., Nature, 2003, vol. 425, no. 6954, pp. 191–196.

    Article  CAS  Google Scholar 

  38. Wang, Z., Gu, Z., Shen, Y., Wang, Y., Li, J., Lu, H., et al., PLoS One, 2016, vol. 11, no. 3. e0150156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gharwalova, L., Sigler, K., Dolezalova, J., Masak, J., Rezanka, T., and Kolouchova, I., J. Microbiol. Biotechnol., 2017, vol. 33, no. 11, p. 205.

    Article  CAS  Google Scholar 

  40. Villegas, I., Biochem. Soc. Trans., 2007, vol. 35, pt. 5, pp. 1156–1160.

    Article  PubMed  Google Scholar 

  41. Lee, J. and Lee, D.G., Curr. Microbiol., 2015, vol. 70, no. 3, pp. 383–389.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Deryabina.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dergacheva, D.I., Mashkova, A.A., Isakova, E.P. et al. Influence of Resveratrol and Dihydroquercetin on Physiological and Biochemical Parameters of the Poly-Extremophilic Yeast Yarrowia lipolytica under Temperature Stress. Appl Biochem Microbiol 55, 152–158 (2019). https://doi.org/10.1134/S0003683819020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819020042

Keywords:

Navigation