Skip to main content
Log in

Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies

  • Problems and Prospects
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A review of modern works on the creation of biotechnological processes using cells immobilized on different carriers is presented. General material requirements are given for for immobilization mainly performed by absorption and mechanical fixation methods. The results of studies on cell immobilization are considered, and an analysis of the materials and methods used is given. Some potential and active applications of systems with immobilized cells for biotechnological productions are described. A review of possible variants of technological solutions for bioreactors loaded by carriers with immobilized cells is also presented. It was demonstrated that the use of such a load allows constructive bioreactor solutions of significantly more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL:

cultural liquid

References

  1. Ramakrishna, S.V. and Prakasham, R.S., Microbial fermentation with immobilized cells, Curr. Sci., 1999, Vol. 77, pp. 87–100.

    CAS  Google Scholar 

  2. Ranganathan, S.V., Narasimhan, S.L., and Muthukumar, K., An overview of enzymatic production of biodiesel, Biores. Technol., 1999, Vol. 99, pp. 3975–3981.

    Article  Google Scholar 

  3. Hollaender, A., Laskin, A., and Rogers, P., Basic Biology of New Developments in Biotechnology, New York: Plenum Press, 1983.

    Book  Google Scholar 

  4. Verbelen, P.J., de schutter, D.P., Delvaux, F., Verstrepen, K.J., and Delvaux, F.R., Immobilized yeast cell systems for continuous fermentation applications, Biotechnol. Lett., 2006, Vol. 28, pp. 1515–1525.

    Article  CAS  PubMed  Google Scholar 

  5. Guisan, J.M., Immobilization of Enzymes and Cells. Methods in Biotechnology, New York: Humana Press, 2006.

    Book  Google Scholar 

  6. Najafpour, G., Younesi, H., Syahidah, K., and Ismail, K., Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae, Biores. Technol., 2004, Vol. 92, pp. 251–260.

    Article  CAS  Google Scholar 

  7. Lin, Y. and Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, Vol. 69, No. 6, pp. 627–642.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, W., Liang, L., Song, Z., and Zhu, M., Continuous ethanol production from sugarcane molasses using a newly designed combined bioreactor system by immobilized Saccharomyces cerevisiae, Biotechnol. Appl. Biochem., 2014, Vol. 61, No. 3, pp. 289–296.

    CAS  PubMed  Google Scholar 

  9. Gondim, D.R., Pacheco, A.M., Rodrigues, T.H.S., Rocha, M.V.P., and Gonzalves, L.R.B., Use of cashew apple bagasse as support for Saccharomyces cerevisiae cells immobilization for ethanol production, J. Biob. Mater. Bioen., 2014, Vol. 8, No. 1, pp. 108–114.

    Article  CAS  Google Scholar 

  10. Liu, Z., Wang, J., and Li, Z., Study on immobilized cells for producing alpha-amylase by using polyvinyl alcohol as the carrier, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi (Chinese J. Biomed. Eng.), 1997, Vol. 14, No. 4, pp. 359–362.

    CAS  Google Scholar 

  11. Darah, I., Weloosamy, I.H., and Sheh-Hong, L., Potential use of nylon scouring pad cubes attachment method for pectinase production by Aspergillus niger HFD5A-1D, Proc. Biochem., 2014, Vol. 49, pp. 660–667.

    Article  Google Scholar 

  12. Esawy, M.A., Gamal, A.A., Kamel, Z., Ismail, A.-M.S., and Abdel-Fattah, A.F., Evaluation of free and immobilized aspergillus niger nrc1amipectinase applicable in industrial processes, Carbohydrate Polym., 2013, Vol. 92, No. 2, pp. 1463–1469.

    Article  CAS  Google Scholar 

  13. Ellaiah, P., Prabhakar, T., Ramakrishna, B., Thaer Taleb, A., and Adinarayana, K., Production of lipase by immobilized cells of Aspergillus niger, Proc. Biochem., 2004, Vol. 39, No. 5, pp. 525–528.

    Article  CAS  Google Scholar 

  14. Zajkoska, P., Rebros, M., and Rosenberg, M., Biocatalysis with immobilized Escherichia coli, Appl. Microbiol. Biotechnol., 2013, Vol. 97, pp. 1441–1455.

    Article  CAS  PubMed  Google Scholar 

  15. Kunamneni, A., Production of alkaline protease with immobilized cells of Bacillus subtilus PE-11 in various matrices by entrapment technique, AAPS Pharm. Sci. Tech., 2005, Vol. 6, No. 3, pp. E391–E397.

    Article  Google Scholar 

  16. Chang, Y.-C. and Chou, C.-C., Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No. 23, Biotechnol. Appl. Biochem., 2002, Vol. 35, pp. 69–74.

    Article  CAS  PubMed  Google Scholar 

  17. Bandi, S., Poluri, E., and Kunamneni, A., Studies on neomycin production using immobilized cells of S. marinensis NUV-5 in various reactor configurations: a technical note, AAPS Pharm. Sci. Tech., 2003, Vol. 4, No. 3, pp. 369–374.

    Google Scholar 

  18. Hamedi, J., Khodagholi, F., and Hassani-Nasab, A., Increased erythromycin production by alginate as a medium ingredient or immobilization support in cultures of Saccharopolyspora erythraea, Biotechnol. Lett., 2005, Vol. 27, pp. 661–664.

    Article  CAS  PubMed  Google Scholar 

  19. Srinivasulu, B., Prakasham, R.S., Jetty, A., Srinivas, S., Ellaiah, P., and Ramakrishna, S.V., Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor, Proc. Biochem., 2002, Vol. 38, No. 4, pp. 593–598.

    Article  CAS  Google Scholar 

  20. Adinarayana, K., Srinivasulu, B., Bapi Raju, K.V.V.S.N., and Ellaiah, P., Continuous neomycin production by immobilized cells of Streptomyces marinensis NUV-5 in an airlift bioreactor, Proc. Biochem., 2004, Vol. 39, pp. 1407–1414.

    Article  CAS  Google Scholar 

  21. Subbarao, Y.M., Madhukar, V., Dupaguntla, S., Senthil, K., and Pratheep, S., Production of neomycin using immobilized cells of Streptomyces marinensis and it’s antimicrobial activity, Res. J. Pharmacog. Phytochem., 2010, Vol. 2, No. 1, pp. 12–14.

    Google Scholar 

  22. Tanyildizi, M.S., Bulut, S., Selen, V., and Ozer, D., Optimization of lactic acid production with immobilized Rhizopus oryzae, African J. Biotechnol., 2012, Vol. 11, No. 34, pp. 8546–8552.

    CAS  Google Scholar 

  23. Kumar, M.N., Gialleli, A.-I., Masson, J.B., Kandylis, P., Bekatorou, A., Koutinas, A.A., and Kanellaki, M., Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites, Biores. Technol., 2014, Vol. 165, pp. 332–335.

    Article  CAS  Google Scholar 

  24. Covarrubias, S.A., de-Bashan, L.E., Moreno, M., and Bashan, Y., Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae, Appl. Microbiol. Biotechnol., 2012, Vol. 93, No. 6, pp. 2669–2680.

    Article  CAS  PubMed  Google Scholar 

  25. Taicheng, A., Lincheng, Z., Guiying, L., Jiamo, F., and Guoying, S., Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment, Rec. Pat. Eng., 2008, Vol. 2, No. 1, pp. 28–35.

    Article  Google Scholar 

  26. Martins, S.C.S., Martins, C.M., Fiucza, L.M.C.G., and Santaella, S.T., Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater, Afr. J. Biotechnol., 2013, Vol. 12, No. 28, pp. 4412–4418.

    Article  CAS  Google Scholar 

  27. de-Bashan, L.E. and Bashan, Y., Immobilized microalgae for removing pollutants: review of practical aspects, Biores. Technol., 2010, Vol. 101, No. 6, pp. 1611–1627.

    Article  CAS  Google Scholar 

  28. Nguyen, T.A. and Juang, R.-S., Treatment of waters and wastewaters containing sulfur dyes: a review, Chem. Eng. J., 2013, Vol. 219, pp. 109–117.

    Article  CAS  Google Scholar 

  29. Liu, K., Li, J., Qiao, H., Lin, A., and Wang, G., Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of Nand P from synthetic wastewater, Biores. Technol., 2012, Vol. 114, pp. 26–32.

    Article  CAS  Google Scholar 

  30. Wu, L., Ge, G., and Wan, J., Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29, J. Environ. Sci. (China), 2009, Vol. 21, No. 2, pp. 237–242.

    Article  CAS  Google Scholar 

  31. Langer, R., Biomaterials and biomedical engineering, Chem. Eng. Sci., 1995, Vol. 50, pp. 4109–4121.

    Article  CAS  Google Scholar 

  32. Pereira, A.P., Mendes-Ferreira, A., Oliveira, J.M., Estevinho, L.M., and Mendes-Faia, A., Effect of Saccharomyces cerevisiae cells immobilization on mead production, LWTFood Sci. Technol., 2014, Vol. 56, pp. 21–30.

    CAS  Google Scholar 

  33. Braschler, T., Johnn, R., Heul, M., Metref, L., and Renaud, P., Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation, Lab. Chip, 2005, Vol. 5, pp. 553–559.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, C.H., Chu, Y.F., Argin-Soysal, S., Hahm, T.S., and Lo, Y.M., Effect of surface characteristics and xanthan polymers on the immobilization of Xanthomonas campestris to fibrous matrices, J. Food Sci., 2004, Vol. 69, pp. E441–E448.

    Article  CAS  Google Scholar 

  35. Israelachvili, J.N. and Pashley, R.M., The hydrophobic interaction is long range, decaying exponentially with distance, Nature, 1982, Vol. 300, pp. 341–342.

    Article  CAS  PubMed  Google Scholar 

  36. Chu, Y.-F., Hsu, C.-H., and Lo, Y.M., Immobilization of bioluminescent escherichia coli cells using natural and artificial fibers treated with polyethylenimine, Biores. Technol., 2009, Vol. 100, pp. 3167–3174.

    Article  CAS  Google Scholar 

  37. Kilonzo, P., Margaritis, A., and Bergougnou, M.A., Airlift-driven fibrous bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells, J. Biotechnol., 2009, Vol. 143, No. 1, pp. 60–68.

    Article  CAS  PubMed  Google Scholar 

  38. Talabardon, M., Scwitzguelbel, J.P., Peringer, P., and Yang, N.T., Acetic acid production from lactose by anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor, Biotechnol. Prog., 2000, Vol. 16, pp. 1008–1017.

    Article  CAS  PubMed  Google Scholar 

  39. Vasilo, R.G., Prospects of development of biofuel production in Russia: biodiesel, Vestnik Biotekhnol. Fiz.Khim. Biol. im. Yu.A. Ovchinnikova, 2007, Vol. 3, No. 1, pp. 47–54.

    Google Scholar 

  40. Atadashi, I.M., Aroua, M.K., and Abdul Aziz, A., High quality biodiesel and its diesel engine application: a review, Renew. Sustain. Energ. Rev., 2010, Vol. 14, pp. 1999–2008.

    Article  CAS  Google Scholar 

  41. Ratkova, E.L. and Fedorov, M.V., On a relationship between molecular polarizability and partial molar volume in water, J. Chem. Phys., 2011, Vol. 135, p. 244109.

    Article  PubMed  Google Scholar 

  42. Terekhova, I.V., Romanova, A.O., Kumeev, R.S., and Fedorov, M.V., Selective Na+/K+ effects on the formation of a-cyclodextrin complexes with aromatic carboxylic acids: competition for the guest, J. Phys. Chem., 2010, Vol. 114, pp. 12607–12613.

    Article  CAS  Google Scholar 

  43. Romanova, A., Chibunova, E., Kumeev, R., Fedorov, M., and Terekhova, I., A-cyclodextrin/aminobenzoic acid binding in salt solutions at different ph: dependence on guest structure, Int. J. Biolog. Macromolec., 2013, Vol. 57, pp. 255–258.

    Article  CAS  Google Scholar 

  44. Fedorov, M.V. and Kornyshev, A.A., Unravelling the solvent response to neutral and charged solutes, Mol. Phys., 2007, Vol. 105, pp. 1–16.

    Article  CAS  Google Scholar 

  45. Kawaguti, H.Y., Buzzano, M.F., Orsi, D.C., Suzuki, G.T., and Sato, H.H., Effect of the additive polyethylenimine and glutaraldehyde on the immobilization of Erwinia sp. D12 cells in calcium alginate for isomaltulose production, Proc. Biochem., 2006, Vol. 41, pp. 2035–2040.

    Article  CAS  Google Scholar 

  46. Kilonzo, P., Margaritis, A., and Bergougnou, M., Effects of surface treatment and process parameters on immobilization of recombinant yeast cells by adsorption to fibrous matrices, Biores. Technol., 2011, Vol. 102, pp. 3662–3672.

    Article  CAS  Google Scholar 

  47. Vadillo-Rodrigues, V., Busscher, H.J., Norde, W., de Vries, J., Dijkstra, R.J.B., Stokroos, I., and van der Mei, H.C., Nanoscale cell wall deformation impacts long-range bacterial adhesion forces on surfaces, Appl. Environ. Microbiol., 2004, Vol. 70.

  48. Mortensen, N.P., Fowlkes, J.D., Sullivan, C.J., Allison, D.P., Larsen, N.B., Molin, S., and Doktycz, M.J., Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells, Langmuir, 2009, Vol. 25, pp. 3728–3733.

    Article  CAS  PubMed  Google Scholar 

  49. Huang, Y. and Yang, S.T., Acetate production from whey lactose using coimmobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor, Biotechnol. Bioeng., 1998, Vol. 60, pp. 498–507.

    Article  CAS  PubMed  Google Scholar 

  50. Melo, J.S. and D’Souza, S.F., Simultaneous filtration and immobilization of cells from a flowing suspension using a bioreactor containing polyethylenimine coated cotton threads: application in the continuous inversion of concentrated sucrose syrups, J. Microbiol. Biotechnol., 1999, Vol. 15, pp. 23–27.

    Article  CAS  Google Scholar 

  51. Dicosmo, F., Facchini, P.J., and Neuman, A.W., Does the spontaneous adhesion of cultured plant cells to polymer surfaces have potential as an immobilization technique, Trends Biotechnol., 1998, Vol. 6, pp. 137–140.

    Article  Google Scholar 

  52. Yang, S.-T. and Shu, C.-H., Kinetics and stability of GM-CSF production by recombinant yeast cells immobilized in a fibrous-bed bioreactor, Biotechnol. Prog., 1996, Vol. 12, pp. 449–456.

    Article  CAS  PubMed  Google Scholar 

  53. Lin, Y.-H., Hwang, S.-C.J., Shih, W.-C., Chen, K.-C., Development of a novel microorganism immobilization method using anionic polyurethane, J. Appl. Polym. Sci., 2006, Vol. 99, pp. 738–743.

    Article  CAS  Google Scholar 

  54. Basak, B., Bhunia, B., and Dey, A., Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol biodegradation, Int. Biodeterior. Biodegrad., 2014, Vol. 93, pp. 107–117.

    Article  CAS  Google Scholar 

  55. Corona-Gonzalez, R.I., Miramontes-Murillo, R., Arriola-Guevara, E., Guatemala-Morales, G., Toriz, G., and Pelayo-Ortiz, C., Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid, Biores. Technol., 2014, Vol. 164, pp. 113–118.

    Article  CAS  Google Scholar 

  56. de Souza, E.A., Rossi, D.M., and Zachia Ayub, M.O., Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol using immobilized cells of Klebsiella pneumoniae BLh-1, Renew. Energy, 2014, Vol. 72, pp. 253–257.

    Article  Google Scholar 

  57. Lin, M., Liu, Y., Chen, W., Wang, H., and Hu, X., Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil, Int. Biodeter. Biodegrad., 2014, Vol. 88, pp. 8–12.

    Article  CAS  Google Scholar 

  58. Teunissen, A.W. and Steensma, H.Y., Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family, Yeast, 1995, Vol. 11, No. 11, pp. 1001–1013.

    Article  CAS  PubMed  Google Scholar 

  59. Machado, M.D., Janssens, S., Soares, H.M.V.M., and Soares, E.V., Removal of heavy metals using a brewer’s yeast strain of saccharomyces cerevisiae: advantages of using dead biomass, J. Appl. Microbiol., 2009, Vol. 106, No. 6, pp. 1792–1804.

    Article  CAS  PubMed  Google Scholar 

  60. Machado, M.D., Santos, M.S., Gouveia, C., Soares, H.M., and Soares, E.V., Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process, Biores. Technol., 2008, Vol. 99, No. 7, pp. 2107–2115.

    Article  CAS  Google Scholar 

  61. Rapoport, A., Borovikova, D., Kokina, A., Patmalnieks, A., Polyak, N., Pavlovska, I., Mezinskis, G., and Dekhtyar, Y., Immobilisation of yeast cells on the surface of hydroxyapatite ceramics, Proc. Biochem., 2011, Vol. 46, pp. 665–670.

    Article  CAS  Google Scholar 

  62. Michaels Alan, S., Robertson Channing, R., and Cohen Stanley, N., Microbiological methods using hollow fiber membrane reactor, US Patent No. 4440853 A, 1984.

    Google Scholar 

  63. Mulder, M., Basic Principles of Membrane Technology, 2nd ed., Dordrecht: Kluwer Academic Publishers, 1996.

    Book  Google Scholar 

  64. Whitford, W.G. and Cadwell, J.J.S., Interest in hollowfiber perfusion bioreactors is growing, BioProc. Int., 2009, Vol. 7, pp. 54–63.

    CAS  Google Scholar 

  65. Ingles, D.S., Smith, W.J., Taylor, D.P., Cohen, S.N., Michaels, A.S., and Robertson, C.R., Hollow-fiber membrane bioreactors using immobilized E. coli for protein synthesis, Biotechnol. Bioeng., 1983, Vol. 25, No. 11, pp. 2653–2681.

    Article  Google Scholar 

  66. Tsai, S.P., Datta, R., Basu, R., and Yoon, S.H., Syngas conversion system using asymmetric membrane and anaerobic microorganism, US Patent No. 0215163 A1, 2009.

    Google Scholar 

  67. Tsai, S.P., Datta, R., Basu, R., Yoon, S.H., and Robey, R., Modular membrane supported bioreactor for conversion of syngas components to liquid products, US Patent No. 0029434 A1, 2011.

    Google Scholar 

  68. Hickey, R., Datta, R., Tsai, S.P., and Basu, R., Membrane supported bioreactor for conversion of syngas components to liquid products, US Patent No. 0256597, A1, 2011.

    Google Scholar 

  69. Hickey, R., Basu, R., Datta, R., and Tsai, S., Method of conversion of syngas using microorganism on hydrophilic membrane, US Patent No. 7923227, 2011.

    Google Scholar 

  70. Griffin, D.W. and Schultz, M.A., Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes, Environ. Prog. Sustain. Energy, 2012, Vol. 31, pp. 219–224.

    Article  CAS  Google Scholar 

  71. Kundiyana, D.K., Wilkins, M.R., Maddipati, P.B., and Huhnke, R.L., Effect of temperature, ph and buffer on syngas fermentation using clostridium strain P11, Biores. Technol., 2011, Vol. 102, pp. 5794–5799.

    Article  CAS  Google Scholar 

  72. Maddipati, P., Atiyeh, H.K., Bellmer, D.D., and Huhnke, R.L., Ethanol production from syngas by clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract, Biores. Technol., 2011, Vol. 102, No. 11, pp. 6494–6501.

    Article  CAS  Google Scholar 

  73. Liu, K., Atiyeh, H.K., Tanner, R.S., Wilkins, M.R., and Huhnke, R.L., Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi, Biores. Technol., 2012, Vol. 104, pp. 336–341.

    Article  CAS  Google Scholar 

  74. Daniell, J., Kopke, M., and Simpson, D.J., Commercial biomass syngas fermentation, Energies, 2012, Vol. 5, pp. 5372–5417.

    Article  CAS  Google Scholar 

  75. Zahn, J.A. and Saxena, J., Novel ethanologenic species Clostridium coskatii, US Patent No. 0229947 A1, 2011.

    Google Scholar 

  76. Heijstra, B., Kern, E., Koepke, M., Segovia, S., and Liew, F., Novel bacteria and methods of use thereof, WO Patent No. 015317, 2012.

    Google Scholar 

  77. Robertson, C.R. and Kim, I.H., Dual aerobic hollowfiber bioreactor for cultivation of Streptomyces aureofaciens, Biotechnol. Bioeng., 1985, Vol. 27, pp. 1012–1020.

    Article  CAS  PubMed  Google Scholar 

  78. Inloes, D.S., Taylor, D.P., Cohen, S.N., Michaels, A.S., and Robertson, C.R., Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors, Appl. Environ. Microbiol., 1983, Vol. 46, No. 1, pp. 264–278.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Baron, G.V., Willaert, R.G., and De Backer, L., Immobilised cell reactors, in Immobilised Living Cell Systems: Modelling and Experimental Methods, Chichester: England: John Wiley and Sons, 1996, pp. 67–95.

    Google Scholar 

  80. Obradovic, B., Nedovic, V.A., Bugarski, B., Willaert, R.G., and Vunjak-Novakovic, G., Immobilised cell bioreactors, in Undamentals of Cell Immobilisation Biotechnology, Nedovic, V. and Willaert, R., Eds., Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004, pp. 411–436.

    Chapter  Google Scholar 

  81. Dalmau, M., Monclucs, H., Gabarrocn, S., Rodriguez-Roda, I., and Comas, J., Towards integrated operation of membrane bioreactors: effects of aeration on biological and filtration performance, Biorec. Technol., 2014, Vol. 171, pp. 103–112.

    Article  CAS  Google Scholar 

  82. Lotter, N.O., Whiteman, E., and Bradshaw, D.J., Modern practice of laboratory flotation testing for flow sheet development: a review, Minerals Eng., 2014, Vol. 66–68, pp. 2–12.

    Article  Google Scholar 

  83. dos Santos, N.A., Savassi, O., Clark Peres, A.E., and Martins, A.H., Modelling flotation with a flexible approach—integrating different models to the compartment model, Minerals Eng., 2014, Vol. 66–68, pp. 68–76.

    Article  Google Scholar 

  84. Li, Q., Mcginnis, S., Sydnor, C., Wong, A., and Renneckar, S., Nanocellulose life cycle assessment, ACS Sustain. Chem. Eng., 2013, Vol. 1, No. 8, pp. 919–928.

    Article  CAS  Google Scholar 

  85. Guo, B., Chen, W., and Yan, L., Preparation of flexible, highly transparent, cross-linked cellulose thin film with high mechanical strength and low coefficient of thermal expansion, ACS Sustain. Chem. Eng., 2013, Vol. 1, No. 11, pp. 1474–1479.

    Article  CAS  Google Scholar 

  86. Kose, R., Mitani, I., Kasai, W., and Kondo, T., “Nanocellulose” as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision, Biomacromolecules, 2011, Vol. 12, No. 3, pp. 716–720.

    Article  CAS  PubMed  Google Scholar 

  87. Jin, H., Kettunen, M., Laiho, A., Pynnonen, H., Paltakari, J., Marmur, A., Ikkala, O., and Ras, R.H.A., Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil, Langmuir, 2011, Vol. 27, No. 5, pp. 1930–1934.

    Article  CAS  PubMed  Google Scholar 

  88. Habibi, Y., Lucia, L.A., and Rojas, O.J., Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev., 2010, Vol. 110, No. 6, pp. 3479–3500.

    Article  CAS  PubMed  Google Scholar 

  89. Nair, S.S., Zhu, J.Y., Deng, Y., and Ragauskas, A.J., Hydrogels prepared from cross-linked nanofibrillated cellulose, ACS Sust. Chem. Eng., 2014, Vol. 2, No. 4, pp. 772–780.

    Article  CAS  Google Scholar 

  90. McKee, J.R., Hietala, S., Seitsonen, J., Laine, J., Kontturi, E., and Ikkala, O., Thermoresponsive nanocellulose hydrogels with tunable mechanical properties, ACS Macro Lett., 2014, Vol. 3, No. 3, pp. 266–270.

    Article  CAS  Google Scholar 

  91. Bodin, A., Ahrenstedt, L., Fink, H., Brumer, H., Risberg, B., and Gatenholm, P., Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering, Biomacromolecules, 2007, Vol. 8, No. 12, pp. 3697–3704.

    Article  CAS  PubMed  Google Scholar 

  92. Anirudhan, T.S., Rejeena, S.R., and Tharun, A.R., Investigation of the extraction of hemoglobin by adsorption onto nanocellulose-based superabsorbent composite having carboxylate functional groups from aqueous solutions: kinetic, equilibrium, and thermodynamic profiles, Ind. Eng. Chem. Res., 2013, Vol. 52, No. 32, pp. 11016–11028.

    Article  CAS  Google Scholar 

  93. Parikka, K., Leppanen, A.-S., Xu, C., Pitkanen, L., Eronen, P., Osterberg, M., Brumer, H., Willfoor, S., and Tenkanen, M., Functional and anionic celluloseinteracting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides, Biomacromolecules, 2012, Vol. 13, No. 8, pp. 2418–2428.

    Article  CAS  PubMed  Google Scholar 

  94. Boyle, A.L. and Woolfson, D.N., De novo designed peptides for biological applications, Chem. Soc. Rev., 2011, Vol. 40, pp. 4295–4306.

    Article  CAS  PubMed  Google Scholar 

  95. Bellesia, G., Fedorov, M.V., Kuznetsov, Y.A., and Timoshenko, E.G., Structure and stability of chiral beta-tapes: a computational coarse-grained approach, J. Chem. Phys., 2005, Vol. 122, p. 134901.

    Article  PubMed  Google Scholar 

  96. Sarikaya, M., Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K., and Baneyx, F., Molecular biomimetics: nanotechnology through biology, Nat. Mat., 2003, Vol. 2, pp. 577–585.

    Article  CAS  Google Scholar 

  97. Fedorov, M.V., Goodman, J.M., Schumm, S., Solvent effects and hydration of a tripeptide in sodium halide aqueous solutions: an in silico study, Phys. Chem., 2007, Vol. 9, pp. 5423–5435.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Gotovtsev.

Additional information

Original Russian Text © P.M. Gotovtsev, E.Yu. Yuzbasheva, K.V. Gorin, V.V. Butylin, G.U. Badranova, N.I. Perkovskaya, E.B. Mostova, Z.B. Namsaraev, N.I. Rudneva, A.V. Komova, R.G. Vasilov, S.P. Sineokii, 2015, published in Biotekhnologiya, 2015, No. 2, pp. 8–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotovtsev, P.M., Yuzbasheva, E.Y., Gorin, K.V. et al. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. Appl Biochem Microbiol 51, 792–803 (2015). https://doi.org/10.1134/S0003683815080025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815080025

Keywords

Navigation