Skip to main content
Log in

Effect of pH of adsorption buffers on the number and antigen-binding activity of monoclonal antibodies immobilized on the surface of polystyrene microplates

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The change in the concentration and antigen-binding activity of 28 monoclonal antibodies was studied after their adsorption on the surface of polystyrene microplates in buffers with different pH values (1.0, 2.8, 7.5, 9.6, and 11.9). We used 16 clones to the HIV p24 protein and 12 clones to the surface antigen of Hepatitis B Virus. The binding efficiency of adsorbed antibodies to the labeled antigen was evaluated by the slope of the linear region of the binding curve to the concentration axis. It was shown that the antigen-binding activity of six antibodies (21.5%) statistically significantly increased after adsorption at pH 2.8 and 11.9 as compared to pH 7.5 and 9.5. The maximum amount of antibodies was found to be adsorbed on the solid surface at pH 7.5. The analysis of the binding of 125I-HBs-antigen to adsorbed antibodies made it possible to evaluate the concentration of active antibodies on the polystyrene surface. It was shown that the increase in the antigen-binding activity was due to an increase in the proportion of antibodies with retained activity after adsorption at pH 2.8 and 11.9. Under these conditions, about 20% of the antibodies retained their antigen-binding activity, and 6% did so after immobilization at pH 7.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plant, A.L., Locascio-Brown, L., Haller, W., and Durst, R.A., Appl. Biochem. Biotechnol., 1991, vol. 30, no. 1, pp. 83–98.

    Article  CAS  PubMed  Google Scholar 

  2. Butler, J.E., Methods in Molecular Medicine, Decker, J. and Reischl, U., Eds., Totowa, NJ: Humana Press Inc., 2004, vol. 94, pp. 333–372.

    CAS  Google Scholar 

  3. Kumada, Y., Hamasaki, K., Shiritani, Y., Ohse, T., and Kishimoto, M., J. Biotechnol., 2009, vol. 142, no. 2, pp. 135–141.

    Article  CAS  PubMed  Google Scholar 

  4. Alves, N.J., Mustafaoglu, N., and Bilgicer, B., Biosens Bioelectron., 2013, no. 49, pp. 387–393.

    Article  CAS  PubMed  Google Scholar 

  5. Feng, B., Wang, C., Xie, X., Feng, X., Li, Y., and Cao, Z., Biochem. Biophys. Res. Commun., 2014, vol. 450, no. 1, pp. 429–432.

    Article  CAS  PubMed  Google Scholar 

  6. Geerligs, H.J., Weijer, W.J., Bloemhoff, W., Welling, G.W., and Welling-Wester, S., J. Immunol. Methods, 1988, vol. 106, no. 2, pp. 239–244.

    Article  CAS  PubMed  Google Scholar 

  7. Craig, J.C., Parkinson, D., Goatley, L., and Knowles, N., J. Biol. Stand., 1989, vol. 17, no. 3, pp. 281–289.

    Article  CAS  PubMed  Google Scholar 

  8. Bantroch, S., Buhler, T., and Lam, J.S., Clin. Diagn. Lab. Immunol., 1994, vol. 1, no. 1, pp. 55–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Crowther, A. and John, R., Methods in Molecular Biology, 2nd ed., New York: Humana Press, 2009.

  10. Cuvelier, A., Bourguignon, J., Muir, J.F., Martin, J.P., and Sesboue, R., J. Immunoassay, 1996, vol. 17, no. 4, pp. 371–382.

    Article  CAS  PubMed  Google Scholar 

  11. Sponholtz, D.K., IVD Technol. Technical Bulletin, 1995, vol. 1, no. 3, p. 12.

    Google Scholar 

  12. Tarakanova, Yu.N., Dmitriev, D.A., Massino, Yu.S., Smirnova, M.B., Segal, O.L., Fartushnaya, O.V., Yakovleva, D.A., Kolyaskina, G.I., Lavrov, V.F., and Dmitriev, A.D., Appl. Biochem. Microbiol., 2012, vol. 48, no. 5, pp. 506–512.

    Article  CAS  Google Scholar 

  13. Dmitriev, A.D., Tarakanova, J.N., Yakovleva, D.A., Dmitriev, D.A., Phartooshnaya, O.V., Kolyaskina, G.I., Massino, Y.S., Borisova, O.V., Segal, O.L., Smirnova, M.B., Ulanova, T.I., and Lavrov, V.F., J. Immunoassay Immunochem., 2013, vol. 34, no. 4, pp. 414–437.

    Article  CAS  PubMed  Google Scholar 

  14. Massino, Yu.S., Kizim, E.A., Dergunova, N.N., Vostrikov, V.M., and Dmitriev, A.D., Immunol. Lett., 1992, vol. 33, no. 3, pp. 217–222.

    Article  CAS  PubMed  Google Scholar 

  15. Massino, Y.S., Dergunova, N.N., Kizim, E.A., Smirnova, M.B., Tereskina, E.B., Kolyaskina, G.I., and Dmitriev, A.D., J. Immunol. Methods, 1997, vol. 201, no. 1, pp. 57–66.

    Article  CAS  PubMed  Google Scholar 

  16. Nikulina, V.A., Kizim, E.A., Massino, Y.S., Segal, O.L., Smirnova, S.P., Avilov, V.V., Saprigin, D.B., Smotrov, S.P., Tichtchenko, V.A., Kolyaskina, G.I., and Dmitriev, A.D., Clin. Chim. Acta, 2000, vol. 299, nos. 1–2, pp. 25–44.

    Article  CAS  PubMed  Google Scholar 

  17. Nakane, P.K. and Kawaoi, A., J. Histochem. Cytochem., 1974, no. 12, pp. 1084–1091.

    Article  Google Scholar 

  18. Greenwood, F.G., Hunter, W.M., and Glover, J.S., Biochem. J., 1963, vol. 89, no. 1, pp. 114–123.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Fasman, G.D., Handbook of Biochemistry and Molecular Biology, Fasman, G.D., Ed., Cleveland: CRC Press, 1976, vol. 2.

  20. Pardue, H.L., Clin. Chem., 1997, vol. 43, no. 10, pp. 1831–1837.

    CAS  PubMed  Google Scholar 

  21. Esser, P., Thermo Sci. Nunc Bull., 1992, no. 10, pp. 3–6.

    Google Scholar 

  22. Butler, J.E., Ni, L., Nessler, R., Joshi, K.S., Suter, M., Rosenberg, B., Chang, J., Brown, W.R., and Cantarero, L.A., J. Immunol. Methods, 1992, vol. 150, nos. 1–2, pp. 77–90.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, F., Dubey, M., Takahashi, H., Castner, D.G., and Grainder, D.W., Anal. Chem., 2010, vol. 82, no. 7, pp. 2047–2058.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Tarakanova.

Additional information

Original Russian Text © Yu.N. Tarakanova, A.D. Dmitriev, Yu.S. Massino, A.A. Pechelulko, O.L. Segal, Yu.O. Skoblov, T.I. Ulanova, V.F. Lavrov, D.A. Dmitriev, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 4, pp. 424–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarakanova, Y.N., Dmitriev, A.D., Massino, Y.S. et al. Effect of pH of adsorption buffers on the number and antigen-binding activity of monoclonal antibodies immobilized on the surface of polystyrene microplates. Appl Biochem Microbiol 51, 462–469 (2015). https://doi.org/10.1134/S0003683815040158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815040158

Keywords

Navigation