Skip to main content
Log in

Probable limits of sea ice extent in the northwestern Subarctic Pacific during the last glacial maximum

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

The article summarizes and analyzes published data on the distribution of sea-ice and open-ocean diatoms in 42 cores of bottom sediments from the northwestern part of the Subarctic Pacific that accumulated during the last glacial maximum (LGM). Based on micropaleontological records, the extent of winter sea ice during the LGM could be limited to the Okhotsk and Bering seas. During the warm season, the surface water masses from the open Subarctic Pacific spread widely in the marginal seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Arsen’ev, The Currents and Water Masses of the Bering Sea (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  2. M. S. Barash, “The boundary of floating ice in the North Atlantic in the Upper Pleistocene,” Oceanology (Engl. Transl.) 14, 846–851 (1974).

    Google Scholar 

  3. Yu. P. Vasilenko, S. A. Gorbarenko, and Ts. Tszou, “Ice cover of the Sea of Okhotsk in Late Pleistocene glaciation and Holocene,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 2, 70–77 (2011).

    Google Scholar 

  4. A. D. Dobrovol’skii and B. S. Zalogin, The Seas of the Soviet Union (Moscow State Univ., Moscow, 1982) [in Russian].

    Google Scholar 

  5. A. P. Zhuze, Stratigraphic and Paleogeographic Studies in the Northwestern Part of Pacific Ocean (Academy of Sciences of USSR, Moscow, 1962) [in Russian].

    Google Scholar 

  6. A. P. Lisitsyn, Glacial Sedimentation in the World Ocean (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  7. A. G. Matul, V. V. Mukhina, S. A. Gorbarenko, and V. Yu. Leskov, “The Quaternary micropaleontological and lithophysical records in the sediments of the northern part of the Sea of Okhotsk,” Oceanology (Engl. Transl.) 43, 551–560 (2003).

    Google Scholar 

  8. I. A. Mel’nikov and L. L. Bondarchuk, “The ecology of mass accumulations of colonial diatoms under Arctic drifting ice,” Okeanologiya (Moscow) 27, 317–321 (1987).

    Google Scholar 

  9. V. V. Mukhina and A. G. Matul, “Late Quaternary diatom stratigraphy and paleoceanology of the Deryugin Basin (Sea of Okhotsk) during the Last Glacial Maximum,” Oceanology (Engl. Transl.) 49, 558–566 (2009).

    Google Scholar 

  10. E. A. Ovsepyan, E. V. Ivanova, L. O. Murdmaa, and G. N. Alekhina, “Sea-surface bioproductivity changes in the Northwest Pacific over the last 25 kyr,” Oceanology (Engl. Transl.) 54, 505–518 (2014).

    Google Scholar 

  11. S. P. Pletnev, M. V. Cherepanova, E. D. Ivanova, I. V. Utkin, Ya. V. Kuz’min, and G. S. Burr, “Biostratigraphy of Upper Quaternary sediments in the southern part of the Oceanology Institute Rise, Sea of Okhotsk,” Stratigr. Geol. Correl. 18, 450–463 (2010).

    Article  Google Scholar 

  12. I. D. Rostov, G. I. Yurasov, N. I. Rudykh, et al., Atlas of Oceanography of the Bering, Okhotsk, and Japan Seas (Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 2007). http://pacificinfo.ru/data/cdrom/2/start_russian. htm.

    Google Scholar 

  13. M. A. Smirnova, G. K. Kazarina, A. G. Matul, and L. Max, “Diatom evidence for paleoclimate changes in the northwestern Pacific during the last 20000 years,” Oceanology (Engl. Transl.) 55, 383–389 (2015).

    Google Scholar 

  14. S. T. Belt, Massé G., S. J. Rowland, et al., “A novel chemical fossil of palaeo sea ice: IP25,” Org. Geochem. 38, 16–27 (2007).

    Article  Google Scholar 

  15. G. R. Bigg, C. D. Clark, and A. L. C. Hughes, “A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction,” Earth Planet. Sci. Lett. 265, 559–570 (2008).

    Article  Google Scholar 

  16. A. B. G. Bush and S. G. H. Philander, “The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model,” J. Geophys. Res.: Atmos. 104 (20), 24509–24525 (1999).

    Article  Google Scholar 

  17. B. E. Caissie, J. Brigham-Grette, K. T. Lawrence, et al., “Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records,” Paleoceanography 25 (PA1206), (2010). doi 10.1029/2008PA001671

    Google Scholar 

  18. D. J. Cavalieri and C. L. Parkinson, “On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas,” J. Geophys. Res.: Oceans 92 (7), 7141–7162 (1987).

    Article  Google Scholar 

  19. D. L. Clark and A. Hanson, “Central Arctic Ocean sediment textures: a key to ice transport mechanism,” in Glacial-Marine Sedimentation, Ed. by B. Molnia (Plenum, New York, 1983), pp. 301–330.

    Chapter  Google Scholar 

  20. J. R. Conolly and M. Ewing, “Ice-rafted detritus in northwest Pacific deep-sea sediments,” in Geological Investigations of the North Pacific, Ed. by J. D. Hays (Geological Society of America, Boulder, 1970), pp. 219–231.

    Chapter  Google Scholar 

  21. M. S. Cook, L. D. Keigwin, and C. A. Sancetta, “The deglacial history of surface and intermediate water of the Bering Sea,” Deep Sea Res., Part II 52, 2163–2173 (2005).

    Article  Google Scholar 

  22. A. De Vernal and T. F. Pedersen, “Micropaleontology and palynology of core PAR87A-10: a 23000 year record of paleoenvironmental changes in the Gulf of Alaska, northeast North Pacific,” Paleoceanography 12 (6), 821–830 (1997).

    Article  Google Scholar 

  23. A. De Vernal, C. Hillaire-Marcel, S. Solignac, et al., “Reconstructing Sea Ice Conditions in the Arctic and Sub-Arctic Prior to Human Observations, in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Ed. by E. T. DeWeaver, (American Geophysical Union, Washington, 2008), pp. 27–45.

    Google Scholar 

  24. R. Gersonde and A. De Vernal, “Reconstruction of past sea ice extent,” PAGES News 21 (1), 30–31 (2013).

    Article  Google Scholar 

  25. S. A. Gorbarenko, “Stable isotope and lithologic evidence of Late Glacial and Holocene oceanography of the Northwestern Pacific and its marginal seas,” Quat. Res. 46, 230–250 (1996).

    Article  Google Scholar 

  26. S. A. Gorbarenko, I. A. Basov, M. P. Chekhovskaya, and J. Southon, “Orbital and millennium scale environmental changes in the southern Bering Sea during last glacial-Holocene: geochemical and paleontological evidences,” Deep Sea Res., Part II 52, 2174–2185 (2005).

    Article  Google Scholar 

  27. S. A. Gorbarenko, P. Wang, R. Wang, and X. Cheng, “Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 286, 97–106 (2010).

    Article  Google Scholar 

  28. J. R. Hein, A. S. Bychkov, and A. E. Gibbs, Data and Results from R.V. Aleksandr Vinogradov Cruises 91-av-19/1, North Pacific Hydrochemistry Transect; 91-av-19/2, North Equatorial Pacific Karin Ridge Fe–Mn Crust Studies; and 91-av-19/4, Northwest Pacific and Bering Sea Sediment Geochemistry and Paleoceanographic Studies: U.S. Geological Survey, Open File Report 94-230 (US Department of the Interior, Washington, 1994).

    Google Scholar 

  29. L. E. Heusser and J. J. Morley, “Monsoon fluctuations over the past 350 kyr: high-resolution evidence from Northeast Asia/Northwest Pacific climate proxies (marine pollen and radiolarians),” Quat. Sci. Rev. 16, 565–581 (1997).

    Article  Google Scholar 

  30. S. H. Kang and G. A. Fryxell, “Fragilariopsis cylindrus (Grunow) Krieger: the most abundant diatom in water column assemblages of Antarctic marginal ice-edge zones,” Polar Biol. 12, 609–627 (1992).

    Article  Google Scholar 

  31. K. Katsuki and K. Takahashi, “Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary,” Deep Sea Res., Part II 52, 2110–2130 (2005).

    Article  Google Scholar 

  32. S.-J. Kim and Y.-G. Park, “Glacial ocean circulation and property changes in the North Pacific,” Atmos.-Ocean. 46, 257–275 (2008).

    Article  Google Scholar 

  33. N. Lundholm and G. R. Hasle, “Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere—morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov.,” Phycologia 49 (5), 438–460 (2010).

    Article  Google Scholar 

  34. MARGO Project Members, “Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum,” Nat. Geosci. 2, 127–132 (2009).

    Article  Google Scholar 

  35. D. G. Martinson, N. G. Pisias, and J. D. Hays, “Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300 000-year chronostratigraphy,” Quat. Res. 27, 1–30 (1987).

    Article  Google Scholar 

  36. L. Max, J.-R. Riethdorf, R. Tiedemann, et al., “Sea surface temperature variability and sea-ice extent in the subarctic Northwest Pacific during the past 15.000 years,” Paleoceanography 27 (PA3213), (2012). doi 10.1029/ 2012PA002292

    Google Scholar 

  37. T. C. Moore Jr, L. H. Burckle, K. Geitzenauer, et al., “The reconstruction of sea surface temperatures in the Pacific Ocean of 18 000 B.P.,” Mar. Micropaleontol. 5, 215–247 (1980).

    Article  Google Scholar 

  38. D. Nürnberg, D. Dethleff, R. Tiedemann, et al., “Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka—evidence from ice-rafted debris and planktonic δ18O,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 310, 191–205 (2011).

    Article  Google Scholar 

  39. K. Ohtani, “Relative transport in the Alaskan Stream in winter,” J. Oceanogr. Soc. Jpn. 26 (5), 271–282 (1970).

    Article  Google Scholar 

  40. Y. Okazaki, K. Takahashi, K. Katsuki, et al., “Late Quaternary paleoceanographic changes in the southwestern Okhotsk Sea: evidence from geochemical, radiolarian, and diatom records,” Deep Sea Res., Part II 52, 2332–2350 (2005).

    Article  Google Scholar 

  41. R. O. Ramseier, C. Garrity, E. Bauerfeind, and R. Peinert, “Sea-ice impact on long-term particle flux in the Greenland Sea’s Odden–Nordbukta region, 1985–1996,” J. Geophys. Res.: Oceans 104 (3), 5329–5343 (1999).

    Article  Google Scholar 

  42. J. Ren, R. Gersonde, O. Esper, and C. A. Sancetta, “Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 402, 81–103 (2014).

    Article  Google Scholar 

  43. J.-R. Riethdorf, L. Max, D. Nürnberg, et al., “Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: implications for upper-ocean stratification,” Paleoceanography 28, 91–104 (2013). doi 10.1002/palo.20014

    Article  Google Scholar 

  44. J. H. Robertson, PhD Thesis (Columbia University, New York, 1975).

    Google Scholar 

  45. R. Röthlisberger and N. Abram, “Sea-ice proxies in Antarctic ice cores,” PAGES News 17 (1), 24–26 (2009).

    Google Scholar 

  46. T. Sakamoto, M. Ikehara, K. Aoki, et al., “Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea,” Deep Sea Res., Part II 52, 2275–2301 (2005).

    Article  Google Scholar 

  47. C. A. Sancetta and S. W. Robinson, “Diatom evidence on Wisconsin and Holocene events in the Bering Sea,” Quat. Res. 20 (2), 232–245 (1983).

    Article  Google Scholar 

  48. M. Sarnthein, U. Pflaumann, and M. Weinelt, “Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates,” Paleoceanography 18 (2), (2003). doi 10.1029/2002PA000771

    Google Scholar 

  49. K. Shiga and I. Koizumi, “Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records,” Marine Micropaleontol. 38, 91–117 (2000).

    Article  Google Scholar 

  50. E. E. Syvertsen, “Ice algae in the Barents Sea: types of assemblages, origin, fate and role in the ice edge phytoplankton bloom,” Polar Res. 10 (1), 277–287 (1991).

    Article  Google Scholar 

  51. K. E. K. St. John and L. A. Krissek, “Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific,” Paleoceanography 14 (5), 653–662 (1999).

    Article  Google Scholar 

  52. W. Yanase and A. Abe-Ouchi, “The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations,” Clim. Past. 3, 439–451 (2007).

    Article  Google Scholar 

  53. M. Uda, “Oceanography of the subarctic Pacific Ocean,” J. Fish. Res. Board Can. 20, 119–179 (1963).

    Article  Google Scholar 

  54. W.-L. Wang and L.-C. Wang, “Reconstruction of oceanographic changes based on the diatom records of the central Okhotsk Sea over the last 500000 years,” Terr., Atmos. Ocean. Sci. 19 (4), 403–411 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Matul.

Additional information

Original Russian Text © A.G. Matul, 2017, published in Okeanologiya, 2017, Vol. 57, No. 5, pp. 774–781.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matul, A.G. Probable limits of sea ice extent in the northwestern Subarctic Pacific during the last glacial maximum. Oceanology 57, 700–706 (2017). https://doi.org/10.1134/S0001437017050113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437017050113

Navigation