Skip to main content
Log in

Modeling processes of the protrusion of near-coastal anticyclonic eddies through the Rim Current in the Black Sea

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The eddy-resolving (1/30)° version of the low-dissipative DieCAST [7] ocean circulation model is used for modeling processes of the protrusion of near-coastal anticyclonic eddies (NAEs) through the Rim Current (RC). Under mean climatic forcing, the model realistically reproduces the evolution of the Caucasian NAE (CNAE) from its generation, formation of an attached anticyclonic meander, protrusion through the RC, and, finally, to the formation of an isolated anticyclonic eddy and its dissipation within the Eastern Cyclonic Gyre of the Black Sea. The process of double protrusion of the CNAE and the Kizil-Yirmak NAE into the RC, their passages through the RC, and merging in the eastern part of the Black Sea is also considered. The modeled space-time parameters of NAE evolution agree well with satellite observations [15, 23].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Ginzburg, A. G. Zatsepin, V. V. Kremenetskiy, et al., “Mesoscale dynamics of the Black Sea waters,” in Oceanology at the Beginning of 21st Century (Nauka, Moscow, 2008), pp. 11–42.

    Google Scholar 

  2. S. G. Demyshev and O. A. Dymova, “Numerical analysis of the mesoscale features of circulation in the Black Sea coastal zone,” Izv. Atmos. Ocean. Phys. 49, 603–610 (2013).

    Article  Google Scholar 

  3. A. I. Ginzburg, A. G. Kostyanoy, N. P. Nezlin, et al., “Anticyclonic vortexes over the northwestern continental slope of the Black Sea and their role in the transfer of chlorophyll-rich shelf waters into the deep waters,” Issled. Zenli Kosmosa, No. 3, 71–81 (2000).

    Google Scholar 

  4. V. N. Egorov, G. G. Polikarpov, S. B. Gulin, et al., “Modern concepts about environment-forming and ecological role of methane emissions from the bottom of the Black Sea,” Morsk. Ekol. Zh. 2 (3), 5–26 (2003).

    Google Scholar 

  5. N. A. Kalashnikova, O. Yu. Lavrova, M. I. Mityagina, et al., “Influence of vortex structures on the distribution of pollution in the coastal zone,” Sovrem. Probl. Distantsionnogo Zondiravaniya Zemli Kosmosa 10 (3), 228–240 (2013).

    Google Scholar 

  6. K. A. Korotenko, “Adaptive model for assessment of turbulence parameters in near-bottom layer of ocean,” Okeanologiya (Moscow) 32, 730–738 (1992).

    Google Scholar 

  7. K. A. Korotenko, “Modeling mesoscale circulation of the Black Sea,” Oceanology (Engl. Transl.) 55, 820–826 (2015).

    Google Scholar 

  8. V. G. Krivosheya, V. B. Titov, I. M. Ovchinnikov, L. V. Moskalenko, A. Yu. Skirta, and V. V. Monakhov, “New data on the current regime on the shelf of the northeastern Black Sea,” Oceanology (Engl. Transl.) 41, 307–316 (2001).

    Google Scholar 

  9. A. A. Kubryakov and S. V. Stanichny, “Dynamics of Batumi anticyclone from satellite data,” Morsk. Gidrofiz. Zh., No. 2, 67–78 (2015).

    Google Scholar 

  10. B. Cushman-Roisin, K. A. Korotenko, C. E. Galos, et al., “Simulation and characterization of the Adriatic Sea mesoscale variability,” J. Geophys. Res.: Oceans 112, 1–13 (2007).

    Google Scholar 

  11. D. E. Dietrich, C. A. Lin, A. Mestas-Nunez, et al., “A high resolution numerical study of Gulf of Mexico fronts and eddies,” Meteorol. Atmos. Phys. 64, 187–201 (1997).

    Article  Google Scholar 

  12. M. Ergün, D. Dondurur, and G. Cifci, “Acoustic evidence for shallow gas accumulations in the sediments of the eastern Black Sea,” Terra Nova 14, 313–320 (2002).

    Article  Google Scholar 

  13. S. Jaoshvily, The Rivers of the Black Sea, Technical Report No. 71 (European Environment Agency, Copenhagen, 2002). http://www.eea.europa.eu/publications/ technical_report_2002_71.

    Google Scholar 

  14. A. A. Kordzadze, D. I. Demetrashvili, and A. A. Surmava, “Dynamical processes developed in the easternmost part of the Black Sea in warm period for 2010–2013,” J. Georgian Geophys. Soc., B: Phys. Atmos., Ocean Space Plasma 16, 3–12 (2013).

    Google Scholar 

  15. G. Korotaev, T. Oguz, and A. Nikiforov, “Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data,” J. Geophys. Res.: Oceans 108, 1–15 (2003). doi 10.1029/2002JC001508

    Article  Google Scholar 

  16. K. Korotenko, M. Bowman, and D. Dietrich, “Highresolution model for predicting the transport and dispersal of oil plumes resulting from accidental discharges in the Black Sea,” Terr., Atmos. Oceanic Sci. 21 (1), 123–136 (2010).

    Article  Google Scholar 

  17. A. A. Kubryakov and S. V. Stanichny, “Seasonal and interannual variability of the Black Sea eddies and its dependence on characteristics of the large-scale circulation,” Deep Sea Res., Part I 97, 80–91 (2015).

    Article  Google Scholar 

  18. A. A. Kubryakov, S. V. Stanichny, A. G. Zatsepin, et al., “Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem,” J. Mar. Syst. 163, 80–94 (2016).

    Article  Google Scholar 

  19. J. V. Staneva, D. E. Dietrich, E. V. Stanev, et al., “Rim Current and coastal eddy mechanisms in an eddyresolving Black Sea general circulation model,” J. Mar. Syst. 31 (1–3), 137–157 (2001).

    Article  Google Scholar 

  20. H. I. Sur, E. Ozsoy, and U. Unluata, “Boundary current instabilities, upwelling, shelf mixing, and eutrophication processes in the Black Sea,” Prog. Oceanogr. 33 (4), 249–302 (1994).

    Article  Google Scholar 

  21. M. Wagner-Friedrichs, PhD Thesis (Bremen, 2007).

    Google Scholar 

  22. A. G. Zatsepin, E. S. Denisov, S. V. Emel’yanov, et al., “Effect of bottom slope and wind on the near-shore current in a rotating stratified fluid: laboratory modeling for the Black Sea,” Oceanology (Engl. Transl.) 45, S13–S26 (2005).

    Google Scholar 

  23. A. G. Zatsepin, A. I. Ginzburg, A. G. Kostianoy, et al., “Observations of Black Sea mesoscale eddies and associated horizontal mixing,” J. Geophys. Res.: Oceans 108 (8), 1–20 (2003).

    Google Scholar 

  24. F. Zhou, G. Shapiro, and F. Wobus, “Cross-shelf exchange in the northwestern Black Sea,” J. Geophys. Res. 119 (4), 2143–2164 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Korotenko.

Additional information

Original Russian Text © K.A. Korotenko, 2017, published in Okeanologiya, 2017, Vol. 57, No. 3, pp. 437–444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotenko, K.A. Modeling processes of the protrusion of near-coastal anticyclonic eddies through the Rim Current in the Black Sea. Oceanology 57, 394–401 (2017). https://doi.org/10.1134/S0001437017020114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437017020114

Navigation