Skip to main content
Log in

Krause Mean Processes Generated by Cubic Stochastic Diagonally Primitive Matrices

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A multi-agent system is a system of multiple interacting entities, known as intelligent agents, who possibly have different information and/or diverging interests. The agents could be robots, humans, or human teams. Opinion dynamics is a process of individual opinions in which a group of interacting agents continuously fuse their opinions on the same issue based on established rules to reach a consensus at the final stage. Historically, the idea of reaching consensus through repeated averaging was introduced by DeGroot for a structured time-invariant and synchronous environment. Since then, consensus, which is the most ubiquitous phenomenon of multi-agent systems, has become popular in various scientific fields such as biology, physics, control engineering, and social science. To some extent, a Krause mean process is a general model of opinion sharing dynamics in which the opinions are represented by vectors. In this paper, we represent opinion sharing dynamics by means of Krause mean processes generated by diagonally primitive cubic doubly stochastic matrices, and then we establish a consensus in the multi-agent system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. De Groot, “Reaching a consensus,” J. Amer. Statist. Assoc. 69, 118–121 (1974).

    Article  Google Scholar 

  2. S. Chatterjee and E. Seneta, “Towards consensus: some convergence theorems on repeated averaging,” J. Appl. Probab. 14, 89–97 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. Automat. Control 48 (6), 985–1001 (2003)).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Moreau, “Stability of multiagent systems with time-dependent communication links,” IEEE Trans. Automat. Control 50 (2), 169–182 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Touri and A. Nedić, “Product of random stochastic matrices,” IEEE Trans. Automat. Control 59 (2), 437–448 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and stochastic gradient optimization algorithms,” IEEE Trans. Automat. Control 31 (9), 803–812 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Girejko, L. Machado, A. B. Malinowska, and N. Martins, “Krause’s model of opinion dynamics on isolated time scales,” Math. Methods Appl. Sci. 39 (18), 5302–5314 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Hegselmann and U. Krause, “Opinion dynamics and bounded confidence: models, analysis and simulation,” J. Artif. Soc. Social Simul. 5 (3), 1–33 (2002).

    Google Scholar 

  9. R. Hegselmann and U. Krause, “Opinion dynamics driven by various ways of averaging,” Comput. Econ. 25, 381–405 (2005).

    Article  MATH  Google Scholar 

  10. U. Krause, “A discrete nonlinear and non-autonomous model of consensus formation,” in Communications in Difference Equations (Gordon and Breach, Amsterdam, 2000), pp. 227–236.

    Google Scholar 

  11. U. Krause, “Compromise, consensus, and the iteration of means,” Elem. Math. 64, 1–8 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. U. Krause, “Markov chains, Gauss soups, and compromise dynamics,” J. Contemp. Math. Anal. 44 (2), 111–116 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Krause, “Opinion dynamics—local and global,” in Proceedings of the Workshop Future Directions in Difference Equations, Ed. by E. Liz and V. Manosa (Universidade de Vigo, Vigo, 2011), pp. 113–119.

    Google Scholar 

  14. A. B. Malinowska, E. Schmeidel, and M. Zdanowicz, “Discrete leader-following consensus,” Math. Methods Appl. Sci. 40 (18), 7307–7315 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. U. Krause, Positive Dynamical Systems in Discrete Time: Theory, Models, and Applications (Walter de Gruyter, Berlin–Munich–Boston, 2015).

    Book  MATH  Google Scholar 

  16. M. Saburov and Kh. Saburov, “Reaching a consensus in multi-agent systems: A time invariant nonlinear rule,” J. Educ. Vocat. Res. 4 (5), 130–133 (2013).

    Article  MATH  Google Scholar 

  17. M. Saburov and Kh. Saburov, “Mathematical models of nonlinear uniform consensus,” ScienceAsia 40 (4), 306–312 (2014).

    Article  MATH  Google Scholar 

  18. M. Saburov and Kh. Saburov, “Reaching a nonlinear consensus: polynomial stochastic operators,” Int. J. Control Autom. Syst. 12 (6), 1276–1282 (2014).

    Article  MATH  Google Scholar 

  19. M. Saburov and Kh. Saburov, “Reaching a nonlinear consensus: a discrete nonlinear time-varying case,” Int. J. Syst. Sci. 47 (10), 2449–2457 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Saburov and Kh. Saburov, “Reaching consensus via polynomial stochastic operators: A general study,” Springer Proc. Math. Stat. 212, 219–230 (2017).

    MathSciNet  MATH  Google Scholar 

  21. M. Saburov and Kh. Saburov, “Mathematical models of nonlinear uniformly consensus II,” J. Appl. Nonlinear Dyn. 7 (1), 95–104 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Ganihodzhaev, “On stochastic processes generated by quadratic operators,” J. Theoret. Probab. 4, 639–653 (1991).

    Article  MathSciNet  Google Scholar 

  23. T. Sarymsakov and N. Ganikhodjaev, “Analytic methods in the theory of quadratic stochastic processes,” J. Theoret. Probab. 3, 51–70 (1990).

    Article  MathSciNet  Google Scholar 

  24. S. Bernstein, “Solution of a mathematical problem connected with the theory of heredity,” Ann. Math. Statist. 13, 53–61 (1942).

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Kesten, “Quadratic transformations: A model for population growth. I,” Adv. in Appl. Probab. 2, 1–82 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. I. Lyubich, Mathematical Structures in Population Genetics (Springer, Berlin–Heidelberg, 1992).

    Book  MATH  Google Scholar 

  27. S. Ulam, A Collection of Mathematical Problems (Interscience, New York–London, 1960).

    MATH  Google Scholar 

  28. M. Saburov and N. A. Yusof, “Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains,” Linear Algebra Appl. 507, 153–157 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Saburov and N. A. Yusof, “The structure of the fixed point set of quadratic operators on the simplex,” Fixed Point Theory 19 (1), 383–396 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Saburov and N. A. Yusof, “On uniqueness of fixed points of quadratic stochastic operators on a 2D simplex,” Methods Funct. Anal. Topology 24 (3), 255–264 (2018).

    MathSciNet  MATH  Google Scholar 

  31. M. Saburov, “Ergodicity of nonlinear Markov operators on the finite-dimensional space,” Nonlinear Anal. 143, 105–119 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Saburov, “Quadratic stochastic Sarymsakov operators,” J. Phys.: Conf. Ser. 697, 012015 (2016).

    Google Scholar 

  33. M. Saburov, “On regularity of diagonally positive quadratic doubly stochastic operators,” Results Math. 72, 1907–1918 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Saburov, “On regularity of positive quadratic doubly stochastic operators,” Math. Notes 103 (2), 328–333 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Saburov, “Ergodicity of \(\mathbf{p}\)-majorizing quadratic stochastic operators,” Markov Process. Related Fields 24 (1), 131–150 (2018).

    MathSciNet  MATH  Google Scholar 

  36. M. Saburov, “Ergodicity of \(\mathbf{p}\)-majorizing nonlinear Markov operators on the finite dimensional space,” Linear Algebra Appl. 578, 53–74 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Saburov, “The discrete-time Kolmogorov systems with historic behavior,” Math. Methods Appl. Sci. 44 (1), 813–819 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Ganikhodzhaev, F. Mukhamedov, and U. Rozikov, “Quadratic stochastic operators and processes: Results and Open Problems,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 (2), 279–335 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  39. R. L. Berger, “A necessary and sufficient condition for reaching a consensus using DeGroot’s method,” J. Amer. Statist. Assoc. 76, 415–418 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  40. N. Ganikhodjaev, H. Akin, and F. Mukhamedov, “On the ergodic principle for Markov and quadratic stochastic processes and its relations,” Linear Algebra Appl. 416, 730–741 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Pulka, “On the mixing property and the ergodic principle for non-homogeneous Markov chains,” Linear Algebra Appl. 434, 1475–1488 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Seneta, Nonnegative Matrices and Markov Chains (Springer, New York, 1981).

    Book  MATH  Google Scholar 

  43. V. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations (Cambridge Univ. Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  44. T. Candan, M. Saburov, and U. Ufuktepe, “Reaching a consensus via Krause mean processes in multi-agent systems: Quadratic Stochastic Operators,” in Progress on Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics (2020), Vol. 341, pp. 397–409.

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

The author is greatly indebted to the anonymous referee for several useful suggestions and comments, which have helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khikmat Saburov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saburov, K. Krause Mean Processes Generated by Cubic Stochastic Diagonally Primitive Matrices. Math Notes 114, 250–264 (2023). https://doi.org/10.1134/S000143462307026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143462307026X

Keywords

Navigation