Skip to main content
Log in

Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The paper deals with the study of the model of point vortices proposed by the German scientist Hermann Helmholtz. Necessary and sufficient conditions for the existence of infinitely many nonequivalent stationary configurations are found for a system consisting of two point vortices of intensity \(\Gamma_1\) and an arbitrary number of point vortices of intensity \(\Gamma_2\). A classification of such configurations is carried out. For the first time, a connection is discovered between the negative Diophantine Pell equation and stationary configurations of point vortices on the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen,” J. Reine Angew. Math. 55, 25–55 (1858).

    MathSciNet  MATH  Google Scholar 

  2. H. Aref, P. K. Newton, M. A. Stremler, T. Tokieda, and D. L. Vainchtein, “Vortex crystals,” Advances in Applied Mechanics 39, 1–79 (2003).

    Article  Google Scholar 

  3. H. Aref, “Relative equilibria of point vortices and the fundamental theorem of algebra,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2132), 2168–2184 (2011).

    MathSciNet  MATH  Google Scholar 

  4. K. A. O’Neil, “Minimal polynomial systems for point vortex equilibria,” Phys. D 219 (1), 69–79 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. V. Demina and N. A. Kudryashov, “Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation,” J. Phys. A 45 (19) (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Tsai, “Bifurcation of point vortex equilibria: four-vortex translating configurations and five-vortex stationary configurations,” Nonlinearity 33 (12), 6564–6589 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. S. Krishnamurthy, M. H. Wheeler, D. G. Crowdy, and A. Constantin, “A transformation between stationary point vortex equilibria,” Proc. A. 476 (2240) (2020).

    MathSciNet  MATH  Google Scholar 

  8. P. K. Newton, The \(N\)-Vortex Problem. Analytical Techniques, in Appl. Math. Sciences (Springer- Verlag, New York, 2001), Vol. 145.

    Book  MATH  Google Scholar 

  9. M. V. Demina and N. A. Kudryashov, “Point vortices and polynomials of the Sawada–Kotera and Kaup– Kupershmidt equations,” Regul. Chaotic Dyn. 16 (6), 562–576 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. K. Tkachenko, “On vortex lattices,” JETP 22 (6), 1282–1286 (1966).

    Google Scholar 

  11. K. A. O’Neil, “Stationary configurations of point vortices,” Trans. Amer. Math. Soc. 302 (2), 383–425 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. V. Demina and N. A. Kudryashov, “Point vortices and classical orthogonal polynomials,” Regul. Chaotic Dyn. 17 (5), 371–384 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. V. Demina and N. A. Kudryashov, “Rotation, collapse, and scattering of point vortices,” Theor. and Comp. Fluid Dynamics 28 (3), 357–368 (2014).

    Article  Google Scholar 

  14. M. V. Demina and N. A. Kudryashov, “Multi-particle dynamical systems and polynomials,” Regul. Chaotic Dyn. 21 (3), 351–366 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Adler and J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation,” Comm. Math. Phys. 61 (1), 1–30 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Loutsenko, “Equilibrium of charges and differential equations solved by polynomials,” J. Phys. A 37 (4), 1309–1321 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. K. A. O’Neil and N. Cox-Steib, “Generalized Adler–Moser and Loutsenko polynomials for point vortex equilibria,” Regul. Chaotic Dyn. 19 (5), 523–532 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Aref, “Vortices and polynomials,” Fluid Dynam. Res. 39 (1–3), 5–23 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956).

    Google Scholar 

  20. Z. I. Borevich and I. R. Shafarevich, Number Theory (Academic Press, New York–London, 1966).

    MATH  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project 19-71-10003, https://rscf.ru/en/project/19-71-10003/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Demina.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 57–67 https://doi.org/10.4213/mzm13684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnevskaya, A.D., Demina, M.V. Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane. Math Notes 114, 46–54 (2023). https://doi.org/10.1134/S0001434623070040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623070040

Keywords

Navigation