Skip to main content
Log in

Liouville-Type Theorem for a Nonlinear Degenerate Parabolic System of Inequalities

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, we establish some new Liouville-type results for solutions of nonlinear degenerate parabolic system of inequalities. Nonexistence of nontrivial global solutions to initial-value problems is studied by using scaling transformations and test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Antonelli, E. Barucci, and A. Pascucci, “A comparison result for FBSDE with applications to decisions theory,” Math. Methods Oper. Res. 54, 407–423 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Antonelli and A. Pascucci, “On the viscosity solutions of a stochastic differential utility problem,” J. Differ. Equations 186, 69–87 (2002).

    Article  MathSciNet  Google Scholar 

  3. H. Wu, “Blow-up and nonexistence of solutions of some semilinear degenerate parabolic equations,” Bound. Value Probl. 157, 1–12 (2015).

    MathSciNet  Google Scholar 

  4. P. Polácik, P. Quittner, and Ph. Souplet, “Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I: Elliptic equations and systems,” Duke Math. J. 139, 555–579 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Polácik, P. Quittner, and Ph. Souplet, “Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part II: Parabolic equations,” Indiana Univ. Math. J. 56, 879–908 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Földes, “Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems,” Czech. Math. J. 136 (61), 169–198 (2011).

    MathSciNet  MATH  Google Scholar 

  7. K. Hayakawa, “On nonexistence of global solutions of some semilinear parabolic differential equations,” Proc. Japan Acad. Ser. A 49, 503–505 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Gidas and J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations,” Comm. Pure Appl. Math. 34(4), 525–598 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Escobedo and M. A. Herrero, “Boundedness and blow up for a semilinear reaction-diffusion system,” J. Differ. Equations 89, 176–202 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. G. Kartsatos and V. V. Kurta, “On a Liouville-type theorem and the Fujita blow-up phenomenon,” Proc. Amer. Math. Soc. 132, 807–813 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Chipot and F. B. Weissler, “Some blowup results for a nonlinear parabolic equation with a gradient term,” SIAM J. Math. Anal. 20, 886–907 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Mitidieri and S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities,” Tr. Mat. Inst. Steklova 234, 3–383 (2001).

    MATH  Google Scholar 

  13. P. Polácik and P. Quittner, “Liouville-type theorems and complete blow-up for indefinite superlinear parabolic equations,” in Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser, Basel, 2005), Vol. 64, pp. 391–402.

    Google Scholar 

  14. F. Sh. Li and J. L. Li, “Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions,” J. Math. Anal. Appl. 385, 1005–1014 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Du and S. Li, “Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations,” Adv. Differential Equations 10, 841–860 (2005).

    MathSciNet  MATH  Google Scholar 

  16. S. N. Armstrong and B. Sirakov, “Nonexistence of positive supersolutions of elliptic equations via the maximum principle,” Comm. Partial Differential Equations 36, 2011–2047 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Caristi, “Existence and nonexistence of global solutions of degenerate and singular parabolic systems,” Abstr. Appl. Anal. 5, 265–284 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. H. Min, “Liouville-type theorem for higher-order Hardy-Hénon system of inequalities,” Math. Inequal. Appl. 17 (4), 1427–1439 (2014).

    MathSciNet  MATH  Google Scholar 

  19. P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, in Birkhäuser Advanced Texts (Birkhäuser Verlag, Basel, 2007).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H. Liouville-Type Theorem for a Nonlinear Degenerate Parabolic System of Inequalities. Math Notes 103, 155–163 (2018). https://doi.org/10.1134/S0001434618010170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434618010170

Keywords

Navigation