Skip to main content
Log in

On the density of polynomials in some spaces L 2(M)

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The question of the density of polynomials in some spaces L 2(M) is studied. The following two variants of the measure M and the polynomials are considered: (1) an N × N matrix-valued nonnegative Borel measure on ℝ and vector-valued polynomials p(x) = (p 0(x), p 1(x), …, p N−1(x)), where the p j (x) are complex polynomials and N ∈ ℕ (2) a scalar nonnegative Borel measure on the strip Π = {(x, φ): x ∈ ℝ, ϕ ∈ [−π, π)}, and power-trigonometric polynomials

$p(x,\phi ) = \sum\limits_{m = 0}^\infty {\sum\limits_{n = - \infty }^\infty {\alpha _{m,n} x^m e^{in\phi } } } ,\alpha _{m,n} \in \mathbb{C}$

, where only finitely many α m,n are nonzero. We show that the polynomials are dense in L 2(M) if and only if M is the canonical solution of the corresponding moment problem. It should be stressed that we do not impose any additional constraints on the measure, except the existence of moments. Using the known descriptions of the canonical solutions,, we obtain conditions on the density of polynomials in L 2(M). Simultaneously, we establish a model for commuting self-adjoint and unitary operators with spectrum of finite multiplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Nikolski, Operators, Functions and Systems: an Easy Reading. Vol. 1. Hardy, Hankel and Toeplitz, in Math. Surveys Monogr. (Amer. Math. Soc., Providence, RI, 2002), Vol. 92.

    Google Scholar 

  2. S. N. Mergelyan, “On the completeness of systems of analytic functions,” Uspekhi Mat. Nauk 8(4), 3–63 (1953). [Transl., Ser. 2, Am. Math. Soc. 19, 109–166 (1962)].

    MathSciNet  Google Scholar 

  3. A. I. Markushevich, Theory of Analytic Functions: Further Construction of the Theory (Nauka, Moscow, 1968), Vol. 2 [in Russian].

    Google Scholar 

  4. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Fizmatgiz, Moscow, 1961; Hafner Publishing Co., New York, 1965).

    MATH  Google Scholar 

  5. N. I. Akhiezer, Lectures in Approximation Theory (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  6. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  7. L. Klotz and S. M. Zagorodnyuk, “Approximation in the mean by matrix-valued polynomials on rectifiable curves,” Ukr. Mat. Visn. 4(1), 1–20 (2007) [Ukr. Math. Bull. 4 (1), 1–19 (2007)].

    MathSciNet  Google Scholar 

  8. S. M. Zagorodnyuk and L. Klotz, “Some interpolation problems in the spaces L p, 0 < p < ∞, on rectifiable curves,” Ukr. Mat. Visn. 5(1), 258–279 (2008) [Ukr. Math. Bull. 5 (2), 257–277 (2008)].

    MathSciNet  Google Scholar 

  9. F. Marcellán and S. M. Zagorodnyuk, “Density of polynomials in some L 2 spaces on radial rays in the complex plane,” Linear Algebra Appl. 435(1), 128–146 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Lopez-Rodriguez, “The Nevanlinna parametrization for a matrix moment problem,” Math. Scand. 89(2), 245–267 (2001).

    MATH  MathSciNet  Google Scholar 

  11. S. M. Zagorodnyuk, “Devinatz’s moment problem: a description all solutions,” J. Operator Theory 68(2), 515–541 (2012).

    MATH  MathSciNet  Google Scholar 

  12. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert space (Vishcha Shkola, Kharkov, 1977), Vol. 1 [in Russian].

    Google Scholar 

  13. M. Rosenberg, “The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure,” Duke Math. J. 31(2), 291–298 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. M. Malamud and S. M. Malamud, “Spectral theory of operator measures in Hilbert space,” Algebra Anal. 15(3), 1–77 (2003) [St. Petersbg. Math. J. 15 (3), 323–373 (2004)].

    MathSciNet  Google Scholar 

  15. M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert space (Izd. Leningradsk. Univ., Leningrad, 1980) [in Russian].

    Google Scholar 

  16. S. M. Zagorodnyuk, “A description of all solutions of the matrix Hamburger moment problem in a general case,” Methods Funct. Anal. Topology 16(3), 271–288 (2010).

    MATH  MathSciNet  Google Scholar 

  17. A. V. Shtraus, “Generalized resolvents of symmetric operators,” Izv. Akad. Nauk SSSR Ser. Mat. 18(1), 51–86 (1954).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Zagorodnyuk.

Additional information

Original Russian Text © S. M. Zagorodnyuk, 2014, published in Matematicheskie Zametki, 2014, Vol. 95, No. 1, pp. 63–79.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagorodnyuk, S.M. On the density of polynomials in some spaces L 2(M). Math Notes 95, 53–66 (2014). https://doi.org/10.1134/S0001434614010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434614010064

Keywords

Navigation