Skip to main content
Log in

Approximation methods in optimal control problems for nonlinear infinite-dimensional systems

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Some notions related to approximate solutions and to the approximation of extremum problems for nonlinear infinite-dimensional systems are proposed. Optimization problems for nonlinear parabolic equations with a fixed terminal state and on an infinite time interval, as well as for singular stationary systems with phase constraints, are illustrated by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Vasil’ev, Optimization Methods (Factorial, Moscow, 2002) [in Russian].

    Google Scholar 

  2. T. Zolezzi, “A characterizations of well-posed optimal control systems,” SIAM J. Control Optim. 19(5), 604–616 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Varga, Optimal Control of Differential and Functional Equations (Acad. Press, 1972; Nauka, Moscow, 1987).

    Google Scholar 

  4. M. I. Sumin, “Suboptimal control of semilinear elliptic equations with phase constraints. I. The maximum principle for minimizing sequences and normality,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 6, 33–44 (2000) [Russian Math. (Iz. VUZ), No. 6, 31–42 (2000)].

    Google Scholar 

  5. I. Ekeland, “The ɛ-variational principle,” in Lecture Notes in Math., Vol. 1446: Methods of Nonconvex Analysis (Springer-Verlag, Berlin, 1990), pp. 1–15.

    Google Scholar 

  6. A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, in University Series (Nauchnaya Kniga, Novosibirsk, 1999), Vol. 5 [in Russian].

    MATH  Google Scholar 

  7. J.-L. Lions, Contrôle des systémes distribues singuliers (Gauthier-Villars, Paris, 1983; Nauka, Moscow, 1987).

    MATH  Google Scholar 

  8. S. Ya. Serovaiskii, “Approximate solution of optimization problems for singular infinite-dimensional systems,” Sibirsk. Mat. Zh. 44(3), 660–673 (2003) [Siberian Math. J. 44 (3), 519–528 (2003)].

    MathSciNet  Google Scholar 

  9. S. Ya. Serovaiskii, “An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 1, 80–86 (2004) [Russian Math. (Iz. VUZ) 48 (1), 77–83 (2004)].

    Google Scholar 

  10. V. F. Krotov and V. I. Gurman, Methods and Problems of Optimal Control (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  11. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie-Verlag, 1974; Mir, Moscow, 1978).

    MATH  Google Scholar 

  12. V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, in Math. Sci. Engrg. (Academic Press, Boston, MA, 1993), Vol. 190.

    Book  MATH  Google Scholar 

  13. P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms, and Applications, in Monogr. Textbooks Pure Appl. Math. (Marcel Dekker, New York, 1994), Vol. 179.

    Google Scholar 

  14. E. Casas, “Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations,” SIAM J. Control Optim. 35(4), 1297–1327 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. P. Raymond and H. Zidani, “Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls,” SIAM J. Control Optim. 36(6), 1853–1879 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  17. M. Bergounioux, “A penalization method for optimal control of elliptic problems with state constraints,” SIAM J. Control Optim. 30(2), 305–323 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Ya. Serovaiskii, “Optimal control for a singular evolution equation with a nonsmooth operator and a fixed terminal state,” Differ. Uravn. 43(2), 251–258 (2007) [Differ. Equations 43 (2), 259–266 (2007)].

    MathSciNet  Google Scholar 

  19. J.-L. Lions, Quelques methodes de résolution des problémes aux limites nonlinéaires (Dunod, Paris, 1969; Mir, Moscow, 1972).

    Google Scholar 

  20. Functional Analysis, Ed. by S. G. Krein (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  21. S. Ya. Serovajsky, “Calculation of functional gradients and extended differentiation of operators,” J. Inverse Ill-Posed Probl. 13(4), 383–396 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. J.-L. Lions, Contrôle optimal de systémes gouvernés par des équations aux dérivées partielles (Dunod, Paris, 1968; 1968; Mir, Moscow, 1972).

    MATH  Google Scholar 

  23. V. I. Averbukh and O. G. Smolyanov, “Differentiation theory in linear topological spaces,” Uspekhi Mat. Nauk 22(6 (138)), 201–260 (1967).

    Google Scholar 

  24. V. Barbu, “Optimal feedback controls for a class of nonlinear distributed parameter systems,” SIAM J. Control Optim. 21(6), 871–894 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Cannarsa and G. Da Prato, “Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations,” SIAM J. Control Optim. 27(4), 861–875 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  27. J. F. Bonnans and E. Casas, “Optimal control of semilinear multistate systems with state constraints,” SIAM J. Control Optim. 27(2), 446–455 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Casas, F. Trôltzsch, and A. Unger, “Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations,” SIAM J. Control Optim. 38(5), 1369–1391 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Rösch and F. Tröltzsch, “On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints,” SIAM J. Control Optim. 46(3), 1098–1115 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Serovaiskii.

Additional information

Original Russian Text © S. Ya. Serovaiskii, 2013, published in Matematicheskie Zametki, 2013, Vol. 94, No. 4, pp. 600–619.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serovaiskii, S.Y. Approximation methods in optimal control problems for nonlinear infinite-dimensional systems. Math Notes 94, 567–582 (2013). https://doi.org/10.1134/S0001434613090277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434613090277

Keywords

Navigation