Skip to main content
Log in

Main axiom of thermodynamics and entropy of number theory: Tunnel and ultrasecond quantization

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We single out the main features of the mathematical theory of equilibrium thermodynamics. The theory of Bose condensate is expressed as a problem in number theory and its relation to various evolutionary processes is studied. It is proved that the points of degeneracy of the Bose gas fractal dimension in momentum space coincide with the critical points of imperfect gases, while the jumps of the critical indices and the Maxwell rule are related to tunnel quantization in thermodynamics. We consider semiclassical methods for tunnel quantization in thermodynamics as well as those for second and third quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Maslov and A. S. Chernyi, “On the maximization and minimization of entropy in various disciplines,” Teor. Veroyatnost. i Primenen. 48(3), 466–486 (2003) [Theory Probab. Appl. 48 (3), 447–464 (2003)].

    MathSciNet  Google Scholar 

  2. L. D. Landau and E.M. Lifshits, Statistical Physics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  3. H. Temperley, “Statistical mechanics and the partition of numbers: I. The transition of liquid helium,” Proceedings of the Royal Society of London. Series A 199(1058), 361–375 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. M. Vershik, shapes,” Funktsional. Anal. i Prilozhen. 30(2), 19 (1996) [Functional Anal. Appl. 30 (2), 90 (1996)].

    Article  MathSciNet  Google Scholar 

  5. V. P. Maslov and V. E. Nazaikinskii, “On the distribution of integer random variables related by a certain linear inequality: I,” Mat. Zametki 83(2), 232–263 (2008) [Math. Notes 83 (2), 211–237 (2008)].

    MathSciNet  Google Scholar 

  6. V. P.Maslov and V. E. Nazaikinskii, “On the distribution of integer random variables related by a certain linear inequality: II,” Mat. Zametki 83(3), 381–401 (2008) [Math. Notes 83 (3), 345–363 (2008)].

    MathSciNet  Google Scholar 

  7. E. M. Apfelbaum and V. S. Vorob’ev, “Correspondence between the ideal Bose gas in a space of fractional dimension and a dense nonideal gas according to Maslov scheme,” Russian J. Math. Phys. 18(1), 19–25 (2011).

    MathSciNet  Google Scholar 

  8. L. D. Landau and E.M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  9. I. Fisher, The Purchasing Power of Money: Its Determination and Relation to Credit, Interest and Crises (Izd. Delo, Moscow, 2001) [in Russian].

    Google Scholar 

  10. V. P. Maslov, Zeno Line, Binodal, T — ρ Diagram and Clusters as New Bose Condensate Bases on New Global Distributions in Number Theory, arXiv 1007.4182v1 [math-ph], 23 July 2010.

  11. V. P. Maslov, “A new approach to probability theory and thermodynamics,” Math. Notes 90(1), 125–135 (2011).

    Article  Google Scholar 

  12. V. P. Maslov, “Comparison of the supercritical states of fluids for imperfect gases and for a fractal ideal gas,” Math. Notes 87(3), 303–310 (2010).

    Article  MathSciNet  Google Scholar 

  13. V. P. Maslov, “Tunnel quantization of thermodynamics and critical exponents,” Math. Notes 90(4), 533–547 (2011).

    Article  Google Scholar 

  14. V. P. Maslov, “Analytic continuation of asymptotic formulas and axiomatics of thermodynamics and quasithermodynamics,” Funktsional. Anal. Prilozhen. 28(4) 28–41 (1994).

    Google Scholar 

  15. V. P. Maslov, “Geometric “quantization” of thermodynamics and statistical corrections at the critical points,” Teoret. Mat. Fiz. 101(3), 433–441 (1994).

    MathSciNet  Google Scholar 

  16. V. P. Maslov, “Generalization of Gibbs’axiom, geometric classification of phase transitions, and the asymptotics at critical points,” Dokl. Acad. Nauk 340(2), 169–171 (1995).

    Google Scholar 

  17. V. P. Maslov, “On a class of Lagrangian manifolds corresponding to variational problems and problems of control theory and thermodynamics,” Funktsional. Anal. Prilozhen. 32(2), 89–91 (1998).

    Google Scholar 

  18. V. P. Maslov, Quantization of Thermodynamics and Ultrasecond Quantization (Institute of Computer Research, Moscow, 2001).

    Google Scholar 

  19. V. P. Maslov, Perturbation Theory and Asymptotical Methods (Izd.Moskov. Univ., Moscow, 1965; Dunod, Paris, 1972) [in Russian and French].

    Google Scholar 

  20. V. P. Maslov and P. P. Mosolov, Nonlinear Wave Equations Perturbed by Viscous Terms (Walter de Gruyter, Berlin, 2000).

    Book  MATH  Google Scholar 

  21. V. P. Maslov, “Nonstandard characteristics in asymptotic problems,” Proceedings of the XIX International Mathematical Congress (Warsaw, 1983) [Polish Sci. Press, Warsaw, 1984].

  22. V. P. Maslov, “Nonstandard characteristics in asymptotic problems,” Uspekhi Mat. Nauk 38(6), 3–36 (1983).

    MathSciNet  Google Scholar 

  23. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, A Wiley-Interscience Publication (John Wiley and Sons, New-York-London-Sydney-Toronto, 1975; Mir, Moscow, 1978), Vol. 1.

    MATH  Google Scholar 

  24. V. L. Ginzburg, Fiz. Tverd. Tela (Leningrad) 2, 2031 (1960) [Sov. Phys. Solid State 2, 1824 (1960)].

    MathSciNet  Google Scholar 

  25. D. Yu. Ivanov, “Critical phenomena in pure liquids,” Vestnik SIBGUTI 3, 94–104 (2009).

    Google Scholar 

  26. D. Yu. Ivanov, Critical Behavior of Non-ideal Systems (Fizmatlit, Moscow, 2003; Wiley-VCH, 2008).

    Google Scholar 

  27. V. P. Maslov and O. Yu. Shvedov, The Method of Complex Germ. (URSS, Moscow, 2000)[in Russian].

    Google Scholar 

  28. V. P. Maslov and S.É. Tariverdiev, “Asymptotics of the Kolmogorov-Feller equation for a system with a large number of particles,” in Itogi Nauki Tekh., Ser. Probab. Theor., Mat. Statist., Theor. Kibern. (VINITI, Moscow, 1982), Vol. 19, pp. 85–120.

    Google Scholar 

  29. V. P. Maslov, “Solution of the Gibbs paradox in the framework of classical mechanics (statistical physics) and crystallization of the gas C 60,” Mat. Zametki 83(5), 787–791 (2008) [Math. Notes 83 (5), 716–722 (2008)].

    MathSciNet  Google Scholar 

  30. M. Schönberg, Nuovo Cim. 9(12), 1139, (1952).

    Article  MATH  Google Scholar 

  31. M. Schönberg, Nuovo Cim. 10(4), 419, (1953).

    Article  MATH  Google Scholar 

  32. J. M. Calo. “Dimer formation in supersonic water vapor molecular beams,” J. Chem. Phys. 62(12), 4904–4910, (1975).

    Article  Google Scholar 

  33. V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. I. Case of even number of neutrons,” Russian J. Math. Phys. 14(3), 304–318 (2007).

    Article  MATH  Google Scholar 

  34. V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. II. Case of odd number of neutrons,” Russian J. Math. Phys. 14(4), 401–412 (2007).

    Article  Google Scholar 

  35. V. P. Maslov, “On the Superfluidity of Classical Liquid in Nanotubes. III,” Russian J. Math. Phys. 15(1), 61–65 (2008).

    Google Scholar 

  36. G. Hummer, J. Rasaiah, and J. Noworyta, “Water conduction through the hydrophobic channel of a carbon nanotube,” Nature 414(8), 188–190 (2001).

    Article  Google Scholar 

  37. S. Joseph and N. Aluru, “Why are carbon nanotubes fast transporters of water?” Nanoletters 8(2), 452–458 (2008).

    Google Scholar 

  38. A. Noy, H. Park, F. Fornasiero, et al., “Nanofluidics in carbon nanotubes,” Nanotoday 2(6), 22–29 (2007).

    Article  Google Scholar 

  39. V. P. Maslov. “On Homogeneous Mixtures of Gases,” Math. Notes 89(5), 706–711 (2011).

    Article  Google Scholar 

  40. V. V. V’yugin and V. P. Maslov, “Concentration theorems for entropy and free energy,” Problemy Peredachi Informatsii 41(2), 72–88 (2005) [Problems Inform. Transmission 41 (2), 134–149 (2005)].

    MathSciNet  Google Scholar 

  41. G. P. Gladyshev, Thermodynamic Theory of Evolution of Living Creatures (Лquqq, Москва, 1996) [in Russian].

    Google Scholar 

  42. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, 1970; Mir, Moscow, 1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Maslov.

Additional information

The article was submitted by the authors for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, V.P., Maslova, T.V. Main axiom of thermodynamics and entropy of number theory: Tunnel and ultrasecond quantization. Math Notes 90, 385 (2011). https://doi.org/10.1134/S0001434611090070

Download citation

  • Published:

  • DOI: https://doi.org/10.1134/S0001434611090070

Keywords

Navigation