Skip to main content
Log in

The Erdős-Szekeres theorem and congruences

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The following problem of combinatorial geometry is considered. Given positive integers n and q, find or estimate a minimal number h for which any set of h points in general position in the plane contains n vertices of a convex polygon for which the number of interior points is divisible by q. For a wide range of parameters, the existing bound for h is dramatically improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Erdős and G. Szekeres, “A combinatorial problem in geometry,” Compositio Math. 2, 463–470 (1935).

    MathSciNet  Google Scholar 

  2. P. Erdős and G. Szekeres, “On some extremumproblems in elementary geometry,” Ann. Univ. Sci. Budapest Eötvös Sec. Math. 3–4, 53–62 (1961).

    Google Scholar 

  3. W. Morris and V. Soltan, “The Erdős-Szekeres problem on points in convex position — a survey,” Bull. Amer. Math. Soc. (N. S.) 37(4), 437–458 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Szekeres and L. Peters, “Computer solution to the 17-point Erdős-Szekeres problem,” ANZIAM J. 48(2), 151–164 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  5. G. T’oth and P. Valtr, “The Erdős-Szekeres theorem: upper bounds and related results,” in Math. Sci. Res. Inst. Publ., Vol. 52: Combinatorial and Computational Geometry (Cambridge Univ. Press, Cambridge, 2005), pp. 557–568.

    Google Scholar 

  6. F. P. Ramsey, “On a problem of formal logic,” Proc. London Math. Soc. (2) 30, 264–286 (1929).

    Article  Google Scholar 

  7. R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, in Wiley-Intersci. Ser. Discrete Math. Optim. (Wiley, New York, 1990).

    MATH  Google Scholar 

  8. M. Hall, Jr., Combinatorial Theory (Blaisdell, Ginn, Waltham, MA-Toronto-London, 1967; Mir, Moscow, 1970).

    MATH  Google Scholar 

  9. A. Bialostocki, P. Dierker and B. Voxman, “Some notes on the Erdős-Szekeres theorem,” Discrete Math. 91(3), 231–238 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. Caro, “On the generalized Erdős-Szekeres conjecture—a new upper bound,” Discrete Math. 160(1–3), 229–233 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Károlyi, J. Pach, and G. Tóth, “A modular version of the Erdős-Szekeres theorem,” Studia Sci. Math. Hungar 38, 245–259 (2001).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V. A. Koshelev, 2010, published in Matematicheskie Zametki, 2010, Vol. 87, No. 4, pp. 572–579.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshelev, V.A. The Erdős-Szekeres theorem and congruences. Math Notes 87, 537–542 (2010). https://doi.org/10.1134/S0001434610030314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434610030314

Key words

Navigation