Skip to main content
Log in

Nontrivial solutions of a higher-order rational difference equation

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We prove that, for every k ∈ ℕ, the following generalization of the Putnam difference equation

$$ x_{n + 1} = \frac{{x_n + x_{n - 1} + \cdots + x_{n - (k - 1)} + x_{n - k} x_{n - (k + 1)} }} {{x_n x_{n - 1} + x_{n - 2} + \cdots + x_{n - (k + 1)} }}, n \in \mathbb{N}_0 , $$

has a positive solution with the following asymptotics

$$ x_n = 1 + (k + 1)e^{ - \lambda ^n } + (k + 1)e^{ - c\lambda ^n } + o(e^{ - c\lambda ^n } ) $$

for some c > 1 depending on k, and where λ is the root of the polynomial P(λ) = λ k+2λ − 1 belonging to the interval (1, 2). Using this result, we prove that the equation has a positive solution which is not eventually equal to 1. Also, for the case k = 1, we find all positive eventually equal to unity solutions to the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kruse and T. Nesemann, “Global asymptotic stability in some discrete dynamical systems,” J. Math. Anal. Appl. 235(1), 151–158 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  2. X. Yang, “Global asymptotic stability in a class of generalized Putnam equations,” J. Math. Anal. Appl. 322(2), 693–698 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. “The William Lowell Putman Mathematical Competition,” Amer. Math. Monthly, 734–736 (1965).

  4. G. Ladas, “Open problems and conjectures,” J. Difference Equ. Appl. 4(5), 497–499 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Stević, “Existence of nontrivial solutions of a rational difference equation,” Appl. Math. Lett. 20(1), 28–31 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Berg, “Inclusion theorems for nonlinear difference equations with applications,” J. Difference Equ. Appl. 10(4), 399–408 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Berg, Hochschulbücher für Mathematik, Vol. 66: Asymptotische Darstellungen und Entwicklungen (VEB Deutscher Verlag der Wissenschaften, Berlin, 1968).

    Google Scholar 

  8. L. Berg, “On the asymptotics of nonlinear difference equations,” Z. Anal. Anwendungen 21(4), 1061–1074 (2002).

    MATH  MathSciNet  Google Scholar 

  9. L. Berg, “Corrections to “Inclusion theorems for nonlinear difference equations with applications,” J. Difference Equ. Appl. 11(2), 181–182 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Berg and L. v. Wolfersdorf, “On a class of generalized autoconvolution equations of the third kind,” Z. Anal. Anwendungen 24(2), 217–250 (2005).

    MATH  MathSciNet  Google Scholar 

  11. S. Stević, “Asymptotic behaviour of a sequence defined by iteration,” Mat. Vesnik 48(3–4), 99–105 (1996).

    MATH  MathSciNet  Google Scholar 

  12. S. Stević, “Behaviour of the positive solutions of the generalized Beddington-Holt equation,” Panamer. Math. J. 10(4), 77–85 (2000).

    MATH  MathSciNet  Google Scholar 

  13. S. Stević, “Asymptotic behaviour of a sequence defined by iteration with applications,” Colloq. Math. 93(2), 267–276 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Stević, “Asymptotic behaviour of a nonlinear difference equation,” Indian J. Pure Appl. Math. 34(12), 1681–1687 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Stević, “Global stability and asymptotics of some classes of rational difference equations,” J. Math. Anal. Appl. 316(1), 60–68 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Stević, “On positive solutions of a (k + 1)th order difference equation,” Appl. Math. Lett. 19(5), 427–431 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Stević, “Asymptotic behavior of a class of nonlinear difference equations,” Discrete Dyn. Nat. Soc. (2006), Article ID 47 156.

  18. S. Stević, “On monotone solutions of some classes of difference equations,” Discrete Dyn. Nat. Soc. (2006), Article ID 53890.

  19. S. Stević, “On the recursive sequence x n+1 = x n−1/g(x n),” Taiwanese J. Math. 6(3), 405–414 (2002).

    MATH  MathSciNet  Google Scholar 

  20. T. Sun and H. Xi, “On the global behaviour of the nonlinear difference equation x n+1 = f(p n, x n−m, x n−t(k+1)+1)),” Discrete Dyn. Nat. Soc. (2006), Article ID 90625.

  21. S. E. Takahasi, Y. Miura, and T. Miura, “On convergence of a recursive sequence x n+1 = f(x n, x n−1),” Taiwanese J. Math. 10(3), 631–638 (2006).

    MATH  MathSciNet  Google Scholar 

  22. Q. Wang, F. P. Zeng, G. R. Zhang, and X. H. Liu, “Dynamics of the difference equation \( x_{n + 1} = \frac{{\alpha + B_1 x_{n - 1} + B_3 x_{n - 3} + \cdots + B_{2k + 1} x_{n - 2k - 1} }} {{A + B_0 x_n + B_2 x_{n - 2} + \cdots + B_{2k} x_{n - 2k} }} \) ,” J. Difference Equ. Appl. 12(5), 399–417 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  23. X. Yang, F. Sun, and Y. Y. Tang, “A new part-metric-related inequality chain and an application,” Discrete Dyn. Nat. Soc. (2008), Article ID 193872.

  24. L. Berg, E-mail Communication, October 09 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stević.

Additional information

Published in Russian in Matematicheskie Zametki, 2008, Vol. 84, No. 5, pp. 772–780.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stević, S. Nontrivial solutions of a higher-order rational difference equation. Math Notes 84, 718–724 (2008). https://doi.org/10.1134/S0001434608110138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434608110138

Key words

Navigation