Skip to main content
Log in

Impact of Natural and Anthropogenic Factors on Late Holocene Sedimentation in the Chukchi Sea

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Late Holocene sediments have been recovered in a core from the central Chukchi Sea to reconstruct their accumulation conditions. The sediments consist mainly of terrigenous and just partly of biogenic material. Fine sand is dominated by up to 99.8% light fraction minerals, whereas heavy minerals account for not more than 1.4%. Results of magnetic susceptibility, related to the sand and heavy mineral content, decrease from the bottom to the top of the core. The species composition of pollen spectra varies insignificantly throughout the core and, on the whole, reflects the modern vegetation of the Chukchi Sea coast. The increased number of cysts of dinoflagellates and other aquatic palynomorphs, as well as some increased content of coarse-grained material at the upper part of the sediment core, is presumably caused by recent climate warming conditions. Two peaks of 137Cs activity at the 7.5 and 1.5 cm in the core are related to radioactive fallout, caused by the accidents at the Chernobyl nuclear power plant in 1986 and the Fukushima nuclear power plant in 2011. The resulting sedimentation rates of 2.5–3 mm/yr correspond well to rates of sedimentation determined by 210Pb dating (2.0 mm/yr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Anderson, L., Carlsson, K., Hall, P., et al., The effect of the Siberian tundra on the environment of the shelf seas and the Arctic Ocean, Ambio, 1999, vol. 28, pp. 270–280.

    Google Scholar 

  2. Aoyama, M., Kajino, M., Tanaka, T.Y., Sekiyama, T.T., Tsumune, D., Tsubono, T., Hamajima, Y., Inomata, Y., and Gamo, T., 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Daiichi nuclear power plant accident, Japan. Pt. 2. Estimation of 134Cs and 137Cs inventories in the North Pacific Ocean, J. Oceanogr., 2016, vol. 72, pp. 67–76.

    Article  CAS  Google Scholar 

  3. Appleby, P.G., Radiometric dating of sediment records in European mountain lakes, Limnology, 2000, vol. 59, pp. 1–14.

    Google Scholar 

  4. Appleby, P.G., Chronostratigraphic techniques in recent sediments, in Tracking Environmental Change Using Lake Sediments, Last, W.M. and Smol, J.P., Eds., Dordrecht, Netherlands: Kluwer, 2001, vol. 1, pp. 171–203.

    Google Scholar 

  5. Astakhov, A.S., Bosin, A.A., Kolesnik, A.N., and Obrezkova, M.S., Sediment geochemistry and diatom distribution in the Chukchi Sea: Application for bioproductivity and paleoceanography, Oceanography, 2015, vol. 28, no. 3, pp. 190–201.

    Article  Google Scholar 

  6. Astakhov, A.S., Akulichev, V.A., Dar’in, A.V., Kalugin, I.A., Liu, Y., Babich, V.V., Bosin, A.A., Vologina, E.G., and Plotnikov, V.V., Chukchi Sea ice conditions for the last few centuries: Reconstruction from sedimentation records, Dokl. Earth. Sci., 2018, vol. 480, no. 4, pp. 767–772.

    Article  ADS  CAS  Google Scholar 

  7. Bartington instruments limited: Preliminary specification for the MS2E sensor, Oxford: Bartington Instruments Ltd., 1995.

  8. Baskaran, M. and Naidu, A.S., 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 21, pp. 4435–4448.

    Article  ADS  CAS  Google Scholar 

  9. Berglund, B.E. and Ralska-Jasiewiczowa, M., Pollen analysis and pollen diagrams, in Handbook of Holocene Palaeoecology and Palaeohydrology, Berglund, B.E., Ed., New York: Wiley Interscience, 1986, pp. 455–484.

    Google Scholar 

  10. Bossew, P., Ichikawa, M., Mraz, G., Wallner, G., and Wenisch, A., Radiological investigations in the surroundings of Bilibino, Chukotka, Russia, J. Environ. Radioact., 2000, vol. 51, pp. 299–319.

    Article  CAS  Google Scholar 

  11. Brohan, P., Kennedy, J.J., Harris, I., Tett, S.F.B., and Jones, P.D., Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850, J. Geophys. Res., 2006, vol. 111, p. D12106. https://doi.org/10.1029/2005JD006548

    Article  ADS  Google Scholar 

  12. Buesseler, K., Dai, M., Aoyama, M., Benitez-Nelson, C., Charmasson, S., Higley, K., Maderich, V., Masque, P., Morris, P.J., Oughton, D., and Smith, J.N., Fukushima Daiichi-derived radionuclides in the ocean: Transport, fate, and impacts, Ann. Rev. Mar. Sci., 2017, vol. 9, pp. 173–203.

    Article  PubMed  Google Scholar 

  13. Coachman, L.K., Aagaard, K., and Tripp, R.B., Bering Strait, Seattle–London: University of Washington Press, 1975; Leningrad: Gidrometeoizdat, 1979.

  14. Cronin, T.M., O’Regan, M., Pearce, C., Gemery, L., Toomey, M., Semiletov, I., and Jakobsson, M., Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins, Clim. Past., 2017, vol. 13, pp. 1097–1110. https://doi.org/10.5194/cp-13-1097-2017

    Article  Google Scholar 

  15. de Vernal, A. and Hillaire-Marcel, C., Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene, Paleoceanography, 2005, vol. 20, pp. 1–15. https://doi.org/10.1029/2005PA001157.PA4018

  16. Environmental radiation data. Montgomery: US Environmental Protection Agency, Rep. 46, 1986.

  17. Fox, A.L., Hughes, E.A., Trocine, R.P., Trefry, J.H., Schonberg, S.V., McTigue, N.D., Lasorsa, B.K., Konar, B., and Cooper, L.W., Mercury in the northeastern Chukchi Sea: Distribution patterns in seawater and sediments and biomagnification in the benthic food web, Deep Sea Res., Part II, 2014, vol. 102, pp. 56–67.

    Article  CAS  Google Scholar 

  18. Grebmeier, J.M., Cooper, L.W., Feder, H.M., and Sirenko, B.I., Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic, Prog. Oceanogr., 2006, vol. 71, pp. 331–361.

    Article  ADS  Google Scholar 

  19. Honda, M.C., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., Saino, T., Dispersion of artificial caesium-134 and -137 in the western North Pacific one month after the Fukushima accident, Geochem. J., 2012, vol. 46, pp. e1–e9.

    Article  ADS  Google Scholar 

  20. Johnson-Pyrtle, A., Scott, M.R., Laing, T.E., and Smol, J.P., 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments, Sci. Total Environ., 2000, vol. 255, pp. 145–159.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kolesnik, O.N., Kolesnik, A.N., Vologina, E.G., and Mar’yash, A.A., Mineralogical characteristics of the sand fraction in quaternary sediments from the southern margin of the Chukchi Plateau, Arctic Ocean, Oceanology (Engl. Transl.), 2019, vol. 59, no. 4, pp. 556–576. https://doi.org/10.1134/S000143701904009X

  22. Kopchenova, E.V., Mineralogicheskii analiz shlikhov i rudnykh kontsentratov (Mineralogical Analysis of Slicks and Ore Concentrates), Moscow: Nedra, 1979.

  23. Kosheleva, V.A. and Yashin, D.S., Donnye osadki Arkticheskikh morei Rossii (Bottom Sediments of the Russian Seas), St. Petersburg: VNIIOkeanologiya, 1999.

  24. Kozhevnikov, Yu.P., Geosistemnye aspekty rastitel’nogo pokrova Chukotki (Geosystems Aspects of the Vegetation Cover of Chukotka), Vladivostok: DVO AN SSSR, 1989.

  25. Kumamoto, Y., Aoyama, M., Hamajima, Y., Nishino, S., Murata, A., and Kikuchi, T., Radiocesium in the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014, Appl. Radiat. Isot., 2017, vol. 126, pp. 88–92.

    Article  CAS  PubMed  Google Scholar 

  26. Lange, R., Dickerson, M.H., and Gudiksen, P.H., Dose estimates from the Chernobyl accident, Livermore: Lawrence Livermore Nat. Lab., Rep. CA:UCRL-96934, 1987.

  27. Larsen, R.J, Sanderson, C.G., Lee, H.N., Decker, K.M., and Beck, H.L., Fission products detected in Alaska following the Tomsk-7 accident, J. Environ. Radioact., 1994, vol. 23, no. 2, pp. 205–209.

    Article  CAS  Google Scholar 

  28. Lin, W., Chen, L., Yu, L., Ma, H., Zeng, Z., Lin, J., and Zeng, S., Radioactivity impacts of the Fukushima nuclear accident on the atmosphere, Atmos. Environ., 2015, vol. 102, pp. 311–322.

    Article  ADS  CAS  Google Scholar 

  29. Lomonosov, I.S., Antipin, V.S., Lomonosova, T.K., and Gapon, A.E., Comparison of the composition and geochemical features of bedrock and solid runoff of large rivers in the Lake Baikal drainage basin, Geol. Geofiz., 2001. nos. 1–2, pp. 278–297.

  30. Ma, H., Zeng, S., Chen, L., He, J., Yin, M., Zeng, X., and Zeng, W., History of heavy metals recorded in the sediment of the Chukchi Sea, J. Oceanogr. Taiwan Strait, 2008, vol. 27, no. 1, pp. 15–20.

    CAS  Google Scholar 

  31. Neustadt, M.I., On problems and subdivision of the Holocene, especially in USSR, Striae, 1982. N 16, pp. 91–94.

  32. Obrezkova, M.S., Pospelova, V., and Kolesnik, A.N., Distributions of diatoms and dinoflagellate cysts in surface sediments of the Chukchi Sea in relation to sea-surface conditions, Mar. Micropaleontol., 2023, vol. 178, p. 102184. https://doi.org/10.11016/j.marmicro.2022.102184

    Article  ADS  Google Scholar 

  33. Ogorodnikov, V.I. and Rusanov, V.P., Conditions of the accumulation and distribution of amorphous silica in bottom sediments of the Chukchi Sea, Okeanologiya, 1978, vol. 18, no. 6, pp. 1049–1052.

    CAS  Google Scholar 

  34. Pavlidis, Yu.A., Sedimentation in the Chukchi Sea and facies-sedimentation zones of its shelf, in Problemy geomorfologii, litologii i litodinamiki shel’fa (Problems of Geomorphology, Lithology, and Shelf Lithodynamics), Moscow: Nauka, 1982, pp. 47–76.

  35. Pavlov, S.F., Kashik, S.A., Mazilov, V.N., Lomonosova, T.K., Oshchepkov, V.A., Budnikova, N.S., Misharina, V.A., and Bogdashova, L.I., Pozdnepaleozoiskii litogenez na vostoke Tungusskogo basseina (Late Paleozoic Lithogenesis in the East of the Tunguska Basin), Novosibirsk: Nauka, 1982.

  36. Romankevich, E.A. and Vetrov, A.A., Tsikl ugleroda v arkticheskikh moryakh Rossii (The Carbon Cycle in the Arctic Seas of Russia), Moscow: Nauka, 2001.

  37. Rukhin, L.B., Osnovy litologii: Uchenie ob osadochnykh porodakh (Fundamentals of Lithology: Study of Sedimentary Rocks), Leningrad: Nedra, 1969.

  38. Shuiskii, Yu.D. and Ogorodnikov, V.I., Conditions of sedimentation and the main patterns of formation of the granulometric composition of terrigenous sediments of the Chukchi Sea, Litol. Polezn. Iskop., 1981. no. 2, pp. 11–25.

  39. Stein, R., Fahl, K., Schade, I., Manerung, A., Wassmuth, S., Niessen, F., and Nam, S.-I., Holocene variability in sea ice cover, primary production, and Pacific-water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean), J. Quat. Sci., 2017, vol. 32, no. 3, pp. 362–379.

    Article  Google Scholar 

  40. Stocki, T.J., Gamberg, M., Loseto, L., Pellerin, E., Bergman, L., Mercier, J.-F., Genovesi, L., Cooke, M., Todd, B., Sandles, D., Whyte, J., and Wang, X., Measurements of cesium in Arctic beluga and caribou before the Fukushima accident of 2011, J. Environ. Radioact., 2016, vols. 162–163, pp. 379–387.

    Article  PubMed  Google Scholar 

  41. Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J.F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T.J., Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys. Discuss., 2012, vol. 11, pp. 28319–28394. https://doi.org/10.5194/acp-12-2313-2012

    Article  ADS  CAS  Google Scholar 

  42. Takemura, T., Nakamura, H., Takigawa, M., Kondo, H., Satomura, T., Miyasaka, T., and Nakajima, N., A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi Nuclear Power Plant, Sci. Online Lett. Atmos., 2011, vol. 7, pp. 101–104.

    Google Scholar 

  43. Tsoy, I.B., Obrezkova, M.S., Aksentov, K.I., Kolesnik, A.N., and Panov, V.S., Late Holocene environmental changes in the Southwestern Chukchi Sea inferred from diatom analysis, Russ. J. Mar. Biol., 2017, vol. 43, no. 4, pp. 276–285.

    Article  Google Scholar 

  44. Vakulovskii, S.M., Nikitin, A.I., and Chumichev, V.B., On the pollution of the Arctic seas by radioactive waste from Western European radiochemical plants, At. Energy, 1985, vol. 58, no. 6, pp. 445–449.

    Article  CAS  Google Scholar 

  45. Vakulovskii, S.M., Germenchuk, M.G., and Zhukova, O.M., Long-range transport of radionuclides in the atmosphere and in water bodies, in Materialy Mezhdunarodnoi nauchnoi konferentsii “Radiatsiya i ekosistemy” (Proceedings of the International Conference “Radiation and Ecosystems”), Gomel’: Institut radiologii, 2008, pp. 9–12.

  46. Vologina, E.G., Sturm, M., Kalugin, I.A., Dar’in, A.V., Astakhov, A.S., Chernyaeva, G.P., Kolesnik, A.N., and Bosin, A.A., Reconstruction of the conditions of Late Holocene sedimentation by integrated analysis of a core of the bottom sediments from the Chukchi Sea, Dokl. Earth. Sci., 2016, vol. 469, no. 5, pp. 841–845. https://doi.org/10.1134/S1028334X16080183

    Article  ADS  CAS  Google Scholar 

  47. Vologina, E.G., Kalugin, I.A., Dar’in, A.V., Astakhov, A.S., Sturm, M., Chernyaeva G.P., Kulagina, N.V., and Kolesnik, A.N., Late Holocene sedimentation in active geological structures of the Chukchi Sea, Geodin. Tektonofiz., 2018, vol. 9, no. 1, pp. 199–219. https://doi.org/10.5800/GT-2018-9-1-0345

    Article  Google Scholar 

  48. Vologina, E.G., Sturm, M., Astakhov, A.S., and Shi, X., Anthropogenic traces in bottom sediments of Chukchi Sea, J. Quat. Int., 2019, vol. 524, pp. 86–92.

    Article  Google Scholar 

  49. Vologina, E.G., Sturm, M., Kulagina, N.V., and Aksentov, K.I., Composition of Late Holocene deposits in the Southern Chukchi Sea, Oceanology (Engl. Transl.), 2023, vol. 63, no. 1, pp. 84–94. https://doi.org/10.1134/S0001437023010162

  50. Walker, M.J.C., Berkelhammer, M., Björck, S., Cwynar, L.C., Fisher, D.A., Long, A.J., Lowe, J.J., Newnham, R.M., Rasmussen, S.O., and Weiss, H., Formal subdivision of the Holocene series/epoch: A discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (International Commission on Stratigraphy), J. Quat. Int., 2012, vol. 27, no. 7, pp. 649–659.

    Article  Google Scholar 

  51. Wilson, R., D’Arrigo, R., Buckley, B., Büntgen, U., Esper, J., Frank, D., Luckman, B., Payette, S., Vose, R., and Youngblut, D., A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data, J. Geophys. Res., 2007, vol. 112, p. D17103. https://doi.org/10.1029/2006JD008318

    Article  ADS  Google Scholar 

  52. Yoshida, N. and Kanda, J., Tracking the Fukushima radionuclides, Science, 2012, vol. 336, pp. 1115–1116.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the captain and crew of the R/V Akademik M.A. Lavrentiev, coleader of the expedition Shi Xuefa; colleagues from the Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences for assistance in carrying out expeditionary work; and I. Brunner (EAWAG), E.G. Polyakova, and O.N. Shestakova (Institute of the Earth’s Crust SB RAS) for analytical studies.

Funding

The study was supported by the Russian Science Foundation (project no. 21-17-00081). Expeditionary studies were supported by the Russian Ministry of Higher Education and Science (project no. 121021700342-9) and a grant from Shandong Province to the Qingdao National Laboratory of Marine Science and Technology (grant no. 2018SDKJ0104-3). The study partially involved equipment of the Collective Use Center “Geodynamics and Geochronology” of the Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Vologina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vologina, E.G., Sturm, M., Kulagina, N.V. et al. Impact of Natural and Anthropogenic Factors on Late Holocene Sedimentation in the Chukchi Sea. Izv. Atmos. Ocean. Phys. 59, 1698–1708 (2023). https://doi.org/10.1134/S0001433823110087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823110087

Keywords:

Navigation