Skip to main content
Log in

Cross-sensor Comparison of Satellite Products Sentinel-2 and Gaofen-1B/C for Northern Taiga Forests

  • METHODS AND TOOLS FOR PROCESSING AND INTERPRETATION OF SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This study presents the results of the validation of information products on surface reflectance and NDVI, taking into account land cover types, obtained from satellite data of the Chinese PMS GF-1 sensor and the reference data of the European sensor MSI Sentinel-2 (ESA) using image cross validation method. Based on the analysis, a high correlation of the target GF-1 information products and reference Sentinel-2 information products was revealed. The resulting regression coefficients can be used with a high degree of reliability when conducting a complex analysis of satellite data to recalculate the values obtained by the PMS sensor into the corresponding values of the MSI sensor, taking into account the camera of a specific satellite (GF-1C or GF-1B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Albarakat, R. and Lakshmi, V., Comparison of normalized difference vegetation index derived from Landsat, MODIS, and AVHRR for the Mesopotamian marshes between 2002 and 2018, Remote Sens., 2019, no. 11, p. 1245. https://doi.org/10.3390/rs11101245

  2. Anisimov, O.A., Zimov, S.A., Volodin, E.M., and Lavrov, S.A., Methane emission in the Russian permafrost zone and evaluation of its impact on global climate, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 377–385.

    Article  Google Scholar 

  3. Bogoyavlenskii, V.I., Sizov, O.S., Nikonov, R.A., Bogoyavlenskii, I.V., and Kargina, T.N., The Earth’s degassing in the Arctic: genesis of natural and anthropogenic emission of methane, Arkt.: Ekol. Ekon., 2020, no. 3, pp. 6–22. https://doi.org/10.25283/2223-4594-2020-3-6-22

  4. Bondur, V.G., Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1078–1091. https://doi.org/10.1134/S0001433816090103

    Article  Google Scholar 

  5. Bondur, V.G. and Gordo, K.A., Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 955–965. https://doi.org/10.1134/S0001433818090104

    Article  Google Scholar 

  6. Bondur, V.G. and Vorobev, V.E., Satellite monitoring of impact Arctic regions, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 9, pp. 949–968. https://doi.org/10.1134/S0001433815090054

    Article  Google Scholar 

  7. Bondur, V.G., Tsidilina, M.N., and Cherepanova, E.V., Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 1238–1253. https://doi.org/10.1134/S000143381909010X

    Article  Google Scholar 

  8. Bondur, V.G., Mokhov, I.I., Voronova, O.S., and Sitnov, S.A., Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes, Dokl. Earth Sci., 2020, vol. 492, no. 1, pp. 370–375. https://doi.org/10.1134/S1028334X20050049

    Article  Google Scholar 

  9. Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., et al., Copernicus global land service: Land cover 100m: collection 3: epoch 2015: Globe, Version V3.0.1, data set, 2020. https://doi.org/10.5281/zenodo.3939038

  10. Chander, G., Aaron, D., Mishra, N., and Shrestha, A., Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study, IEEE Trans. Geosci. Remote Sens., 2013, vol. 51, pp. 1282–1296. https://doi.org/10.1109/TGRS.2012.2228008

    Article  Google Scholar 

  11. Cherepanova, E.V., Feoktistova, N.V., and Chudakova, M.A., Analysis of methane concentration anomalies over burned areas of the boreal and Arctic zone of Eastern Siberia in 2018–2019 using TROPOMI data, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 12, pp. 1470–1481. https://doi.org/10.1134/S0001433820120385

    Article  Google Scholar 

  12. ESA GMQ Session, ESA Workshop on Land Validation Strategy (November 30–December 1, 2020): Highlights and Recommendations.

  13. Feng, L., Li, J., Gong, W., et al., Radiometric crosscalibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems, Remote Sens. Environ., 2016, vol. 174, pp. 56–68.

    Article  Google Scholar 

  14. Gao, H., Gu, X., Yu, T., Liu, L., Sun, Y., Xie, Y., and Liu, Q., Validation of the calibration coefficient of the GaoFen-1 PMS sensor using the Landsat 8 OLI, Remote Sens., 2016, vol. 8, no. 2, p. 132. http://www.cresda.com/ CN/Downloads. https://developers.google.com/ earth-e-ngine/datasets/catalog/COPERNICUS_S2_SR. https:// sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-2a/.https://doi.org/10.3390/rs8020132

    Article  Google Scholar 

  15. Li, X.Y., Jin, H.J., Jin, X., et al., Influences of wildfires on the permafrost environment: A review, Adv. Clim. Change Res., 2021, no. 1, pp. 29–47.

  16. Liu, Q., Yu, T., and Gao, H., Radiometric cross-calibration of GF-1 PMS sensor with a new BRDF model, Remote Sens., 2019, vol. 11, p. 707. https://doi.org/10.3390/rs11060707

    Article  Google Scholar 

  17. Loew, A., Bell, W., Brocca, L., Bulgin, C.E., Burdanowitz, J., Calbet, X., Donner, R.V., Ghent, D., Gruber, A., Kaminski, T., et al., Validation practices for satellite-based Earth observation data across communities, Rev. Geophys., 2017, vol. 55, pp. 779–817.

    Article  Google Scholar 

  18. D’Odorico, P., Gonsamo, A., Damm, A., and Schaepman, M.E., Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity, IEEE Trans. Geosci. Remote Sens., 2013, vol. 51, no. 3, pp. 1336–1348.

    Article  Google Scholar 

  19. Ponomarev, E.I., Kharuk, V.I., and Shvetsov, E.G., Monitoring prirodnykh pozharov v Sibiri: dinamika gorimosti v sovremennom klimate, prostranstvenno-vremennye zakonomernosti, kharakteristiki i prognozy (Monitoring of Natural Fires in Siberia: Dynamics of Burning in the Modern Climate, Spatiotemporal Patterns, Characteristics, and Forecasts), Krasnoyarsk: Sib. fed. univ., 2019.

  20. Protopopova, V.V. and Gabysheva, L.P., Pyrological characteristics of vegetation in the forests of Central Yakutia and its post-fire dynamics, Prir. Resur. Arkt. Subarkt., 2018, vol. 25, no. 3, pp. 80–85.

    Google Scholar 

  21. Pugach, S.P., Pipko, I.I., Shakhova, N.E., Shirshin, E.A., Perminova, I.V., Gustafsson, O., Bondur, V.G., Ruban, A.S., and Semiletov, I.P., Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: Spatial distribution and interannual variability (2003–2011), Ocean Sci., 2018, vol. 14, no. 1, pp. 87–103. https://doi.org/10.5194/os-14-87-2018

    Article  Google Scholar 

  22. Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I.A., The new VIIRS 375 m active fire detection data product: Algorithm description and initial assessment, Remote Sens. Environ., 2014, vol. 143, pp. 85–96. https://doi.org/10.1016/j.rse.2013.12.008

    Article  Google Scholar 

  23. Semiletov, I.P., Dudarev, O.V., Dmitrevskii, N.N., et al., The climatic role of underwater permafrost degradation as a factor of massive emissions of major greenhouse gases into the atmosphere over the East Arctic seas of Russia (cruise 78 of the Akademik Mstislav Keldysh research vessel), in Itogi ekspeditsionnykh issledovanii v 2018 godu v Mirovom okeane, vnutrennikh vodakh i na arkhipelage Shpitsbergen: Materialy konferentsii (Results of expeditionary research in 2018 in the World Ocean, inland waters, and in the Spitsbergen Archipelago: Conference Proceedings), Moscow: Institut morskikh biologicheskikh issledovanii im. A.O. Kovalevskogo RAN, 2019, pp. 157–173.

  24. Sterckx, S. and Wolters, E., Radiometric top-of-atmosphere reflectance consistency assessment for Landsat 8/OLI, Sentinel-2/MSI, PROBA-V, and DEIMOS-1 over Libya-4 and RadCalNet calibration sites, Remote Sens., 2019, vol. 11, p. 2253. https://doi.org/10.3390/rs11192253

    Article  Google Scholar 

  25. Teillet, P.M. and Ren, X., Spectral band difference effects on vegetation indices derived from multiple satellite sensor data, Can. J. Remote Sens., 2014, vol. 34, pp. 159–173.

    Google Scholar 

  26. Teillet, P.M., Barker, J.L., Markham, B.L., Irish, R.R., Fedosejevs, G., and Storey, J.C., Radiometric crosscalibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets, Remote Sens. Environ., 2001, vol. 78, pp. 39–54.

    Article  Google Scholar 

  27. Tsendbazar, N., Tarko, A., Li, L., Herold, M., Lesiv, M., Fritz, S., and Maus, V., Copernicus Global Land Service: Land Cover 100m: version 3 Globe 2015–2019: Validation report, 2020.

  28. Wang, Q., Li, J., Jin, T., Chang, X., Zhu, Y., Li, Y., Sun, J., and Li, D., Comparative analysis of Landsat-8, Sentinel-2, and GF-1 data for retrieving soil moisture over wheat farmlands, Remote Sens., 2020, vol. 12, p. 2708. https://doi.org/10.3390/rs12172708

    Article  Google Scholar 

  29. Weier, J. and Herring, D., Measuring Vegetation (NDVI & EVI), NASA Earth Observatory, 2000.

    Google Scholar 

  30. Wu, X., Xu, H., and Jiang, J., Cross-comparison of GF-1, GF-2 and Landsat-8 OLI sensor data [J], Geomatics Inf. Sci. Wuhan Univ., 2020, vol. 45, no. 1, pp. 150–158. https://doi.org/10.13203/j.whugis20190084

    Article  Google Scholar 

  31. Xu, H., Liu, Z., and Guo, Y., Comparison of NDVI data between GF-1 PMS-1 and ZY-3 MUX sensors, Trans. Chin. Soc. Agric. Eng., 2016, vol. 32, pp. 148–154. https://doi.org/10.11975/j.issn.1002-6819.2016.08.021

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, MOST (China) and DST (India) according to the research project no. 19-55-80021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Cherepanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanova, E.V., Feoktistova, N.V. Cross-sensor Comparison of Satellite Products Sentinel-2 and Gaofen-1B/C for Northern Taiga Forests. Izv. Atmos. Ocean. Phys. 58, 1652–1663 (2022). https://doi.org/10.1134/S000143382212009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382212009X

Keywords:

Navigation