Skip to main content
Log in

Satellite Research of the Effects of Wildfires on Various Vegetation-Cover Types in Russia

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Comparison between satellite data of low and medium spatial resolution allows calculation of correction factors which provide for improvement of the accuracy of estimates of burned areas and the related emission volumes taking into account various vegetation-cover types, with the use of the MCD64A1 product. Analysis is carried out of more accurate estimates of the areas of burned forest, shrub, and meadow-steppe territories in the Russian Federation and of the volume of emissions of harmful pollutants from wildfires in the period from 2001 to 2021. It is found that 16.1–104.5 thousand square kilometers of forests, shrubs, and meadow-steppes per year burned throughout the 20-year period. Wildfires were the source of the highest volumes of emissions of carbon-containing gases and fine aerosols during the period under study. The volumes of CO, CO2, and PM2.5 emissions from the combustion of forest biomass in the Siberian and Far Eastern Federal districts in 2016 and 2021 exceeded the national mean by more than 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., and Wennberg, P.O., Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 2011, vol. 11, pp. 4039–4072. https://doi.org/10.5194/acp-11-4039-2011

    Article  Google Scholar 

  2. Andreae, M.O., Emission of trace gases and aerosols from biomass burning: An updated assessment, Atmos. Chem. Phys., 2019, vol. 19, pp. 8523–8546. https://doi.org/10.5194/acp-19-8523-2019

    Article  Google Scholar 

  3. Ardakani, A.S., Valadan Zoej, M.J., Mohammadzadeh, A., and Mansourian, A., Spatial and temporal analysis of fires detected by MODIS data in northern Iran from 2001 to 2008, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2011, vol. 4, pp. 216–225. https://doi.org/10.1109/JSTARS.2010.2088111

    Article  Google Scholar 

  4. Bartalev, S.A., Egorov, V.A., Efremov, V.Yu., Lupyan, E.A., Stytsenko, F.V., and Flitman, E.V., Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 9–26.

    Google Scholar 

  5. Bonan, G.B., Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 2008, vol. 320, no. 5882, pp. 1444–1449. https://doi.org/10.1126/science.1155121

    Article  Google Scholar 

  6. Bondur, V.G., Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1039–1048. https://doi.org/10.1134/S0001433811090040

    Article  Google Scholar 

  7. Bondur, V.G., Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1078–1091. https://doi.org/10.1134/S0001433816090103

    Article  Google Scholar 

  8. Bondur, V.G. and Gordo, K.A., Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 955–965. https://doi.org/10.1134/S0001433818090104

    Article  Google Scholar 

  9. Bondur, V.G., Gordo, K.A., and Kladov, V.L., Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in Northern Eurasia according to satellite-monitoring data, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 859–874. https://doi.org/10.1134/S0001433817090055

    Article  Google Scholar 

  10. Bondur, V.G., Tsidilina, M.N., Kladov, V.L., and Gordo, K.A., Irregular variability of spatiotemporal distributions of wildfires and emissions of harmful trace gases in Europe based on satellite monitoring data, Dokl. Earth Sci., 2019a, vol. 485, pp. 461–464. https://doi.org/10.1134/S1028334X19040202

    Article  Google Scholar 

  11. Bondur, V.G., Tsidilina, M.N., and Cherepanova, E.V., Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1238–1253. https://doi.org/10.1134/S000143381909010X

    Article  Google Scholar 

  12. Bondur, V.G., Voronova, O.S., Cherepanova, E.V., Tsidilina, M.N., and Zima, A.L., Spatiotemporal analysis of multi-year wildfires and emissions of trace gases and aerosols in Russia based on satellite data, Izv., Atmos. Ocean. Phys., 2020a, vol. 56, no. 12, pp. 1457–1469. https://doi.org/10.1134/S0001433820120348

    Article  Google Scholar 

  13. Bondur, V.G., Mokhov, I.I., Voronova, O.S., and Sitnov, S.A., Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes, Dokl. Earth Sci., 2020b, vol. 492, no. 1, pp. 370–375. https://doi.org/10.1134/S1028334X20050049

    Article  Google Scholar 

  14. Bondur, V.G., Voronova, O.S., Gordo, K.A., and Zima, A.L., Satellite monitoring of the variability of wildfire areas and emissions of harmful gas components into the atmosphere for various regions of Russia over a 20-year period, Dokl. Earth Sci., 2021a, vol. 500, pp. 890–894. https://doi.org/10.1134/S1028334X21100044

    Article  Google Scholar 

  15. Bondur, V.G., Voronova, O.S., Gordo, K.A., Zima, A.L., and Feoktistova, N.V., Satellite monitoring of multiyear wildfires and related emissions of harmful trace gases into the air environment of Australia, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 9, pp. 1029–1041. https://doi.org/10.1134/S0001433821090449

    Article  Google Scholar 

  16. Bondur, V.G., Gordo, K.A., Voronova, O.S., and Zima, A.L., Satellite monitoring of anomalous wildfires in Australia, Front. Earth Sci., 2021c, vol. 8, p. 617252. https://doi.org/10.3389/feart.2020.617252

    Article  Google Scholar 

  17. Bondur, V., Chimitdorzhiev, T., Kirbizhekova, I., and Dmitriev, A., Estimation of postfire reforestation with SAR polarimetry and NDVI time series, Forests, 2022, vol. 13, p. 814. https://doi.org/10.3390/f13050814

    Article  Google Scholar 

  18. Canadell, J.G. and Raupach, M.R., Managing forests for climate change mitigation, Science, 2008, vol. 320, no. 5882, pp. 1456–1457. https://doi.org/10.1126/science.1155458

    Article  Google Scholar 

  19. Cattau, M.E., Wessman, C., Mahood, A., and Balch, J.K., Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A., Global Ecol. Biogeogr., 2020, vol. 29, pp. 668–681. https://doi.org/10.1111/geb.13058

    Article  Google Scholar 

  20. Chen, D., Pereira, J.M.C., Masiero, A., and Pirotti, F., Mapping fire regimes in China using MODIS active fire and burned area data, Appl. Geogr., 2017, vol. 85, pp. 14–26. https://doi.org/10.1016/j.apgeog.2017.05.013

    Article  Google Scholar 

  21. Chuvieco, E., Giglio, L., and Justice, C., Global characterization of fire activity: Toward defining fire regimes from Earth observation data, Global Change Biol., 2008, vol. 14, pp. 1488–1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x

    Article  Google Scholar 

  22. Desservettaz, M., Paton-Walsh, C., Griffith, D.W.T., et al., Emission factors of trace gases and particles from tropical savanna fires in Australia, J. Geophys. Res.: Atmos., 2017, vol. 122, pp. 6059–6074. https://doi.org/10.1002/2016JD025925

    Article  Google Scholar 

  23. Filkov, A., Ngo, T., Matthews, S., Telfer, S., and Penman, T., Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment: Retrospective analysis and current trends, J. Safety Sci. Resilience, 2020, vol. 1, no. 1, pp. 44–56. https://doi.org/10.1016/j.jnlssr.2020.06.009

    Article  Google Scholar 

  24. Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., et al., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 2010, vol. 114, no. 1, pp. 168–182. https://doi.org/10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  25. Giglio, L., Schroeder, W., and Justice, C.O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 2016, vol. 178, pp. 31–41. https://doi.org/10.1071/WF03054

    Article  Google Scholar 

  26. Giglio, L, Boschetti, L, Roy, D.P., Humber, M.L., and Justice, C.O., The Collection 6 MODIS burned area mapping algorithm and product, Remote Sens. Environ., 2018, vol. 217, pp. 72–85.

    Article  Google Scholar 

  27. Houghton, R.A. and Nassikas, A.A., Global and regional fluxes of carbon from land use and land cover change 1850–2015, Global Biogeochem. Cycles, 2017, vol. 31, no. 3, pp. 456–472. https://doi.org/10.1002/2016GB005546

    Article  Google Scholar 

  28. Junpen, A., Roemmontri, J., Boonman, A., Cheewaphongphan, P., Thao, P.T.B., and Garivait, S., Spatial and temporal distribution of biomass open burning emissions in the Greater Mekong subregion, Climate, 2020, vol. 8, p. 90. https://doi.org/10.3390/cli8080090

    Article  Google Scholar 

  29. Kganyago, M. and Shikwambana, L., Assessment of the characteristics of recent major wildfires in the USA, Australia and Brazil in 2018–2019 using multi-source satellite products, Remote Sens., 2020, vol. 12, p. 1803. https://doi.org/10.3390/rs12111803

    Article  Google Scholar 

  30. Liu, W., Lu, F., Luo, Y., et al., Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China, Ecol Evol., 2017, vol. 7, pp. 6220–6230. https://doi.org/10.1002/ece3.3188

    Article  Google Scholar 

  31. Molinario, G., Davies, D.K., Schroeder, W., and Justice, C.O., Characterizing the spatiotemporal fire regime in Ethiopia using the MODIS-active fire product: A replicable methodology for country-level fire reporting, Afr. Geogr. Rev., 2014, vol. 33, pp. 99–123. https://doi.org/10.1080/19376812.2013.854708

    Article  Google Scholar 

  32. Palumbo, I., Grégoire, J., Simonetti, D., and Punga, M., Spatiotemporal distribution of fire activity in protected areas of Sub-Saharan Africa derived from MODIS data, Procedia Environ. Sci., 2011, vol. 7, pp. 26–31. https://doi.org/10.1016/j.proenv.2011.07.006

    Article  Google Scholar 

  33. Ponomarev, E.I., Kharuk, V.I., and Yakimov, N.D., Current results and perspectives of wildfire satellite monitoring in Siberia, Sib. Lesn. Zh., 2017, no. 5, pp. 25–36. https://doi.org/10.15372/SJFS20170503

  34. Seiler, W. and Crutzen, P.J., Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning, Clim. Change, 1980, vol. 2, no. 3, pp. 207–247.

    Article  Google Scholar 

  35. Shi, Y. and Yamaguchi, Y., A high-resolution and multiyear emissions inventory for biomass burning in Southeast Asia during 2001–2010, Atmos. Environ., 2014, vol. 98, pp. 8–16. https://doi.org/10.1016/j.atmosenv.2014.08.050

    Article  Google Scholar 

  36. Shi, Y., Zang, S., Matsunaga, T., and Yamaguchi, Y., A multi-year and high-resolution inventory of biomass burning emissions in tropical continents from 2001–2017 based on satellite observations, J. Cleaner Prod., 2020, vol. 270, p. 122511. https://doi.org/10.1016/j.jclepro.2020.122511

    Article  Google Scholar 

  37. Vadrevu, K.P., Lasko, K., Giglio, L., et al., Trends in vegetation fires in south and southeast Asian countries, Sci. Rep., 2019, vol. 9, p. 7422. https://doi.org/10.1038/s41598-019-43940-x

    Article  Google Scholar 

  38. Voronova, O.S., Gordo, K.A., Zima, A.L., and Feoktistova, N.V., Strong natural fires in the Russian Federation in 2021 detected using satellite data, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 9, pp. 1065–1076. https://doi.org/10.1134/S0001433822090225

    Article  Google Scholar 

  39. Van Der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., Defries, R.S., Jin, Y., and Van Leeuwen, T.T., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 2010, vol. 10, pp. 11707–11711. https://doi.org/10.5194/acp-10-11707-2010

    Article  Google Scholar 

  40. Van Der Werf, G.R., Randerson, J.T., Giglio, L., Van Leeuwen, T.T., Chen, Y., Rogers, B.M., Kasibhatla, P.S., et al., 2017, Earth Syst. Sci. Data, 2017, vol. 9, pp. 697–720. https://doi.org/10.5194/essd-9-697-2017

    Article  Google Scholar 

  41. Wei, X., Wang, G., Chen, T., Hagan, D.F.T., and Ullah, W., A spatio-temporal analysis of active fires over China during 2003–2016, Remote Sens., 2020, vol. 12, no. 11, p. 1787. https://doi.org/10.3390/rs12111787

    Article  Google Scholar 

  42. Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., and Soja, A.J., The Fire INventory from NCAR (FINN): A high-resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 2011, vol. 4, no. 3, pp. 625–641. https://doi.org/10.5194/gmd-4-625-2011

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075‒15‒2020‒776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Gordo, K.A. & Zima, A.L. Satellite Research of the Effects of Wildfires on Various Vegetation-Cover Types in Russia. Izv. Atmos. Ocean. Phys. 58, 1570–1580 (2022). https://doi.org/10.1134/S0001433822120076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822120076

Keywords:

Navigation