Skip to main content
Log in

Determination of the Total Ozone Content in Atmospheric Column according to the Data of Electro-L No. 3 Spacecraft Using Neural Networks Satellite

  • METHODS AND TOOLS FOR PROCESSING AND INTERPRETATION OF SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

The paper considers a method for retrieval of the total ozone content in the atmospheric column on the basis of artificial neural networks according to the MSU-GS instrument of the Electro-L No. 3 geostationary spacecraft. The tests and comparisons of the retrieved values of the total ozone content according to the MSU-GS data with the ground-based measurements from the AERONET and WOUDC archives, as well as with satellite estimates based on the OMPS instrument data, show a high correlation and accuracy. The mean absolute error when compared with OMPS is 1.9 DU; with AERONET, 13.4; and with WOUDC, 15.7. The correlations are 99.8%, 89.6% and 86.9%, respectively. The results obtained indicate good accuracy and efficiency of the proposed method for retrieval of the total ozone content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Hassler, B., Petropavlovskikh, I., Staehelin, J., August, T., Bhartia, P.K., Clerbaux, C., Degenstein, D., Maziere, M.D., Dinelli, B.M., Dudhia, A., Dufour, G., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Granville, J., et al., Past changes in the vertical distribution of ozone. Part 1: Measurement techniques, uncertainties and availability, Atmos. Meas. Tech., 2014, vol. 7, pp. 1395–1427. https://doi.org/10.5194/amt-7-1395-2014

    Article  Google Scholar 

  2. Ioffe, S. and Szegedy, C., Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML-2015), Lille, France, 2015, pp. 448–456.

  3. Jaross, G., OMPS-NPPL2NM Ozone (O3) Total Column swath orbital V2, Greenbelt, Md., Goddard Earth Sciences Data and Information Services Center (GES DISC), 2017. https://doi.org/10.5067/0WF4HAAZ0VHK

  4. Jin, X., Li, J., Schmidt, C.C., Schmidt, T.J., and Li, J., Retrieval of total column ozone from imagers onboard geostationary satellites, IEEE Trans. Geosci. Remote Sens., 2008, vol. 46, no. 2, pp. 479–488. https://doi.org/10.1109/TGRS.2007.910222

    Article  Google Scholar 

  5. Kingma, D.P. and Ba, J.L., Adam: A method for stochastic optimization, J. Comput. Commun., 2015. https://arxiv. org/abs/1412.6980.

  6. Kramchaninova, E.K. and Uspensky, A.B., Monitoring the total ozone content using data collected by the Elektro-L Russian geostationary meteorological satellite, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 9, pp. 986–992.

    Article  Google Scholar 

  7. Lee, S.J., Ahn, M., and Ha, S., Total column ozone retrieval from the infrared measurements of a geostationary imager, IEEE Trans. Geosci. Remote Sens., 2019, vol. 57, no. 8, pp. 5642–5650. https://doi.org/10.1109/TGRS.2019.2901173

    Article  Google Scholar 

  8. Li, J., Li, J., Schmidt, C.C., Nelson, J.P. III, and Schmit, T.J., High temporal resolution goes sounder single field of view ozone improvements, Geophys. Res. Lett., 2007, vol. 34, L01804. https://doi.org/10.1029/2006GL028172

    Article  Google Scholar 

  9. McPeters, R.D., Bhartia, P.K., Krueger, A.J., and Herman, J.R., Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Goddard Space Flight Center, 1998.

    Google Scholar 

  10. McPeters, R., Frith, S., Kramarova, N., Ziemke, J., and Labow, G., Trend quality ozone from NPP OMPS: The version 2 processing, Atmos. Meas. Tech., 2019, vol. 12, pp. 977–985. https://doi.org/10.5194/amt-12-977-2019

    Article  Google Scholar 

  11. Polyakov, A.V. and Timofeev, Y.M., Determining the total ozone from geostationary earth satellites, Izv. Atmos. Ocean. Phys., 2008, vol. 44, pp. 745–752. https://doi.org/10.1134/S000143380806008X

    Article  Google Scholar 

  12. Roshydromet, Meteorological satellite data and products applications in Roshydromet, CGMS-47 ROSHYDROMET-WP-03, 2019. https://www.cgms-info.org/ Agendas/GetWpFile.ashx?wid=9d79a9f5-17aa-4dc9-9789-58b38a4ba804&aid=a63dcf2e-bcc9-469f-a07b-8824959b599b.

  13. Schmidt, C.C. and Hoffman, J.P., ABI Ozone Detection, Algorithm Theoretical Basis Document NOAA/NESDIS/STAR Ver 2.0, 2010.

  14. Timofeyev, Y.M., Uspensky, A.B., Zavelevich, F.S., Polyakov, A.V., Virolainen, Y.A., Rublev, A.N., Kukharsky, A.V., Kiseleva, J.V., Kozlov, D.A., Kozlov, I.A., Nikulin, A.G., Pyatkin, V.P., and Rusin, E.V., Hyperspectral infrared atmospheric sounder IKFS-2 on “Meteor-M” no. 2: Four years in orbit, J. Quant. Spectrosc. Radiat. Transf., 2019, vol. 238, 106579. https://doi.org/10.1016/j.jqsrt.2019.106579

    Article  Google Scholar 

  15. Turquety, S., Hadji-Lazaro, J., Clerbaux, C., Hauglustaine, D.A., Clough, S.A., Cassé, V., Schlüssel, P., and Mégie, G., Operational trace gas retrieval algorithm for the infrared atmospheric sounding interferometer, J. Geophys. Res., 2004, vol. 109, D21301. https://doi.org/10.1029/2004JD004821

    Article  Google Scholar 

  16. Veefkind, J.P., de Haan, J.F., Brinksma, E.J., Kroon, M., and Levelt, P.F., Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique, IEEE Trans. Geosci. Remote Sens., 2006, vol. 44, no. 5, pp. 1239–1244. https://doi.org/10.1109/TGRS.2006.871204

    Article  Google Scholar 

  17. World Meteorological Organization (WMO), Guide to Instruments and Methods of Observation, vol. 4: Space-Based Observations, Geneva: WMO, 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Bloshchinskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloshchinskiy, V.D., Kuchma, M.O. & Kukharsky, A.V. Determination of the Total Ozone Content in Atmospheric Column according to the Data of Electro-L No. 3 Spacecraft Using Neural Networks Satellite. Izv. Atmos. Ocean. Phys. 58, 1627–1632 (2022). https://doi.org/10.1134/S0001433822120040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822120040

Keywords:

Navigation