Skip to main content
Log in

On the Causes of Cooling and Settlement of the Middle and Upper Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper we show that the concept of cooling and settling of the middle and upper atmosphere formulated in 1999 finds new experimental confirmations in various measurement data of the parameters of both the neutral and ionized components of the middle and upper atmosphere. At the same time, it is becoming more and more obvious that it is impossible to explain the entire range of observed long-term trends in the atmosphere and ionosphere by a mere increase in the CO2 content in the atmosphere. In particular, the main source of CO2 entering the atmosphere is the combustion of hydrocarbon fuels on an industrial scale, which binds free oxygen with carbon. On the other hand, oddly enough, the processes caused by the decrease in the O2 content in the atmosphere are not considered in any theoretical model designed to explain the observed phenomena. In the meanwhile, the effect of a sharp drop in the O2 concentration above the turbopause level is clearly recorded from the data on the response of the ionosphere to solar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. G. V. Givishvili and L. N. Leshchenko, “D region depletions about the Persian Gulf,” J. Atmos. Terr. Phys. 55 (1), 125–128 (1993).

    Article  Google Scholar 

  2. R. G. Roble and R. E. Dickinson, “How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?,” Geophys. Res. Lett. 16, 1441–1444 (1989).

    Article  Google Scholar 

  3. H. Rishbeth, “A greenhouse effect in the ionosphere?,” Planet. Space Sci. 38, 945–948 (1990).

    Article  Google Scholar 

  4. J. Bremer, “Ionospheric trends in mid-latitude as a possible indicator of the atmospheric greenhouse effect,” J. Atmos. Terr. Phys. 54, 1505–1511 (1992).

    Article  Google Scholar 

  5. G. V. Givishvili and L. N. Leshchenko, “Long-term trends in features of the ionosphere and thermosphere of midlatitudes,” Dokl. Akad. Nauk 333 (1), 86–89 (1993).

    Google Scholar 

  6. G. V. Givishvili and L. N. Leshchenko, “Possible evidence of a technogenic impact on the midlatitude ionosphere,” Dokl. Akad. Nauk 334 (2), 213–214 (1994).

    Google Scholar 

  7. M. Feshbach and A. Friendly Jr., Ecocide in the USSR: Health and Nature Under Siege (Basic Books, New York, 1992; Golos, Moscow, 1993).

  8. G. V. Givishvili and L. N. Leshchenko, “Dynamics of the climatic trend of the midlatitude E region of the ionosphere,” Geomagn. Aeron. 35 (3), 166–174 (1995).

    Google Scholar 

  9. G. V. Givishvili, L. N. Leshchenko, O. P. Shmeleva, and T. G. Ivanidze, “Climatic trends of the mid-latitude upper atmosphere and ionosphere,” J. Atmos. Terr. Phys. 57 (8), 871–874 (1995).

    Article  Google Scholar 

  10. G. V. Givishvili, L. N. Leshchenko, E. V. Lysenko, S. P. Perov, A. I. Semenov, N. P. Sergeenko, L. M. Fishkova, and N. N. Shefov, “Long-term trends of some characteristics of the Earth’s atmosphere: Experimental results,” Izv., Atmos. Ocean. Phys. 32 (3), 303–312 (1996).

    Google Scholar 

  11. G. V. Givishvili and G. S. Golitsyn, “About the International Workshop “Freezing and deposition of the middle and upper atmosphere” (Moscow, July 6–10, 1998),” Geomagn. Aeron. 39 (3), 139–144 (1999).

    Google Scholar 

  12. J. Laštovička, R. A. Akmaev, G. Beig, et al., “Emerging pattern global change in the upper atmosphere and ionosphere,” Ann. Geophys. 26 (5), 1255–1268 (2008).

    Article  Google Scholar 

  13. A. D. Danilov, “Long-term trends in the upper atmosphere and ionosphere (a review),” Geomagn. Aeron. (Engl. Transl.) 52 (3), 271–291 (2012).

  14. G. Beig, “Trends in temperature of the mesosphere and its linkages with stratosphere,” in Proceedings of the 10th IAGA/ICMA/SCOSTEP Workshop on Long-Term Changes and Trends in the Atmosphere (Hefei, China, May 14–18, 2018), 2018.

  15. G. A. Kokin, E. V. Lysenko, and S. Kh. Rozenfel’d, “Changes in the temperature of the stratosphere and mesosphere from 1964 to 1988 according to rocket sounding data,” Izv., Fiz. Atmos. Okeana 26 (7), 702–710 (1990).

    Google Scholar 

  16. G. S. Ivanov-Kholodnyi, L. N. Leshchenko, and I. N. Odintsova, “Relationship between X-ray and UV emissions of solar flares in the ionization of the ionospheric E region,” Geomagn. Aeron. 16 (2), 246–250 (1976).

    Google Scholar 

  17. A. D. Danilov and A. V. Konstantinova, “Long-term trends in the parameters of the middle and upper atmosphere and ionosphere (review),” Geomagn. Aeron. (Engl. Transl.) 60 (4), 397–420 (2020).

  18. A. E. Hedin, “Extension of the MSIS thermospheric model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159 (1991).

    Article  Google Scholar 

  19. G. S. Ivanov-Kholodnyi and V. V. Firsov, “The spectrum of shortwave solar radiation at different activity levels,” Geomagn. Aeron. 14 (3), 393–398 (1974).

    Google Scholar 

  20. G. S. Ivanov-Kholodnyi and A. V. Mikhailov, Forecasting the Ionospheric State (Moscow, 1980) [in Russian].

    Google Scholar 

  21. F. J. Mehr and M. A. Biondi, “Electron temperature dependence and recombination of \({\text{O}}_{2}^{ + }\) and NO+ ions with electrons,” Phys. Rev. 181 (1), 264–269 (1969).

    Article  Google Scholar 

  22. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Radiation of the Upper Atmosphere as an Indicator of Its Structure and Dynamics (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  23. R. Garcia, M. L. Puertas, B. Funke, D. Kinnison, and D. March, “Secular trends and solar cycle variability of CO and CO2 in the MLT,” in Proceedings of the 8th Workshop on Long-Term Changes and Trends in Atmosphere, (Cambridge, UK, 2014).

  24. L. Qian, A. G. Burns, S. C. Solomon, and R. G. Roble, “The effect of carbon dioxide cooling on trends in the F2-layer ionosphere,” J. Atmos. Solar. Terr. Phys 71 (14–15), 1592–1601 (2009).

    Article  Google Scholar 

  25. A. I. Semenov, “Long-term changes in the height profiles of ozone and atomic oxygen in the lower thermosphere,” Geomagn. Aeron. (Engl. Transl.) 37 (3), 354–360 (1997).

  26. G. V. Givishvili and L. N. Leshchenko, “Aeronomic characteristics of the upper atmosphere at the middle latitudes: Regional features of long-term variations,” Dokl. Earth Sci. 347 (2), 295–298 (1996).

    Google Scholar 

  27. P. A. Smith and J. W. King, “Long-term relationships between sunspots, solar faculae and the ionosphere,” J. Atmos. Terr. Phys. 43 (10), 1057–1063 (1981).

    Article  Google Scholar 

  28. J. K. Donaldson, T. J. Wellman, and W. L. Oliver, “Long-term change in thermospheric temperature above Saint Santin,” J. Geophys. Res. 115, A11305 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Givishvili.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

This paper was prepared based on an oral report presented at the all-Russian Natural Radiation, Structure and Dynamics of the Middle and Upper Atmosphere conference (Moscow, November 22–23, 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Givishvili, G.V., Leshchenko, L.N. On the Causes of Cooling and Settlement of the Middle and Upper Atmosphere. Izv. Atmos. Ocean. Phys. 58, 516–527 (2022). https://doi.org/10.1134/S0001433822050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822050048

Keywords:

Navigation