Skip to main content
Log in

Vertical Distribution of Aleurite and Sand Particles in Windsand Flux over a Desertified Area

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Measurements in a desertified area in Astrakhan oblast at heights from 3 to 15 cm under almost nonintermittent saltation on August 23 and September 9, 2011, have been used to determine the size distribution functions of saltating particles in the range from 30 to 330 μm and the vertical profiles of differential number concentrations of particles with sizes of 47.0, 85.6, 104.6, 127.7, and 156.0 μm, which are approximated by exponents. In the lower saltation layer of around 9 cm in thickness, the height scale and the logarithmic concentration gradient have been found to be independent of wind speed. At heights of 11 and 15 cm, the total concentration of saltating particles is nonlinearly related to wind speed in the atmospheric surface layer. For the variation range of wind speeds from 6 to 11.0 m/s, vertical distributions of the concentration of saltating particles have been constructed using approximations by piecewise exponential profiles of the total concentration of particles. An analytical dependence of the logarithmic concentration gradient in the upper saltation layer on the wind speed has been obtained. A small-parameter model of the vertical distribution of saltating particles in the range of heights from 0 to 15 cm has been developed. Approximations of dependences of the height scale on the particle size have been proposed for the vertical profiles of concentration and mass fluxes of saltating particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. IPCC Special Report Global Warming of 1.5°C (IPCC, 2018).

  2. A. N. Zolotokrylin, Climatic Desertification (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  3. R. Miller, I. Tegen, and J. Perlwitz, “Surface radiative forcing by soil dust aerosol and the hydrologic cycle,” J. Geophys. Res. 109, DO4203 (2004).

    Article  Google Scholar 

  4. S. C. Alfaro, A. Gaudichet, L. Gomes, and M. Maille, “Modeling the size distribution of a soil aerosol produced by sandblasting,” J. Geophys. Res. 102, 11239–11249 (1997).

    Article  Google Scholar 

  5. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).

    Google Scholar 

  6. Y. Shao, Physics and Modeling of Wind Erosion (Springer, New York, 2000).

    Google Scholar 

  7. J. F. Kok, E. J. R. Parteli, T. I. Michaels, and D. B. Karam, “The physics of wind-blown sand and dust,” Rep. Prog. Phys. 75, 1–119 (2012).

    Article  Google Scholar 

  8. O. E. Semenov, Introduction to Experimental Meteorology and Climatology of Sandstorms (Fizmatkniga, Moscow, 2020) [in Russian].

    Google Scholar 

  9. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, I. A. Zlobin, D. V. Buntov, and A. V. Sokolov, “Study of the dynamics of saltating sand grains over desertified territories,” Dokl. Earth Sci. 452 (6), 1067–1073 (2013).

    Article  Google Scholar 

  10. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, A. V. Sokolov, and D. V. Buntov, “Influence of the saffman force, lift force, and electric force on sand grain transport in a wind–sand flow,” Dokl. Earth Sci. 467 (3), 314–319 (2016).

    Article  Google Scholar 

  11. T. Ju, X. Li, H. Zhang, and Y. Song, “Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: Aerosols contribution and size distributions,” Atmos. Environ. 176, 82–90 (2018).

    Article  Google Scholar 

  12. O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, “Dust resuspension under weak wind conditions: Direct observations and model,” Atmos. Chem. Phys. 12, 5147–5162 (2012).

    Article  Google Scholar 

  13. M. Klose and Y. Shao, “Stochastic parameterization of dust emission and application to convective atmospheric conditions,” Atmos. Chem. Phys. 12, 7309–7320 (2012).

    Article  Google Scholar 

  14. N. V. Vazaeva, O. G. Chkhetiani, and A. O. Maksimenkov, “Organized roll circulation and transport of mineral aerosols in the atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 55 (2), 152–166 (2019).

    Article  Google Scholar 

  15. G. I. Gorchakov, A. V. Karpov, and R. A. Gushchin, “Turbulent fluxes of the dust aerosol on the desertified area,” Dokl. Earth. Sci. 494 (2), 799–802 (2020).

    Article  Google Scholar 

  16. E. A. Malinovskaya and O. G. Chkhetiani, “On conditions of wind-blown removal of soil particles” Vychisl. Mekh. Sploshnykh Sred 13 (2), 175–188 (2020).

    Google Scholar 

  17. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “The saltating particle aleurite mode in wind–sand flux over a desertified area,” Dokl. Earth Sci. 488 (2), 1103–1106 (2019).

    Article  Google Scholar 

  18. D. V. Buntov, R. A. Gushchin, and O. I. Datsenko, “Four-channel photoelectric counter of saltating sand particles,” Atmos. Oceanic Opt. 31 (6), 548–551 (2018).

    Article  Google Scholar 

  19. F. G. Pettijohn, Sedimentary Rocks (Harper, New York, 1957).

    Google Scholar 

  20. B. R. White and J. C. Schulz, “Magnus effect in saltation,” J. Fluid Mech. 81 (3), 497–512 (1977).

    Article  Google Scholar 

  21. X. J. Zheng, N. Huang, and Y. H. Zhou, “Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement,” J. Geophys. Res. 108 (D10), 4322 (2003).

    Article  Google Scholar 

  22. X. Liu and Z. Dong, “Experimental investigation of the concentration profile of a blowing sand cloud,” Geomorphology 60, 371–382 (2004).

    Article  Google Scholar 

  23. N. Huang, X.-J. Zheng, Y.-H. Zhou, and R. Scott Van Pelt, “Simulation of wind-blown sand movement and probability density function of liftoff velocities of sand particles,” J. Geophys. Res. 111, D20201 (2006).

    Article  Google Scholar 

  24. K. R. Rasmussen and M. Sorensen, “Vertical variation of particle speed and flux in aeolian saltation: Measurement and modeling,” J. Geophys. Res. 113, FO2S12 (2008).

    Google Scholar 

  25. M. Creyssels, P. Dupont, A. El Moctar, A. Valance, I. Cantat, J. T. Jenkins, J. M. Pasini, and K. R. Rasmussen, “Saltating particles in a turbulent boundary layer: Experiment and theory,” J. Fluid Mech. 625, 47–74 (2009).

    Article  Google Scholar 

  26. D. S. Schmidt, R. A. Schmidt, and Y. D. Dent, “Electrostatic force on saltating sand,” J. Geophys. Res. 103 (D8), 8997–9001 (1998).

    Article  Google Scholar 

  27. J. F. Kok and N. O. Renno, “Electrostatics in wind-blown sand,” Phys. Rev. Lett. 100 (1), 01450L (2008).

    Article  Google Scholar 

  28. G. I. Gorchakov, V. I. Ermakov, V. M. Kopeikin, A. A. Isakov, A. V. Karpov, and A. V. Ul’yanenko, “Electric currents of saltation in windsand flux,” Dokl. Earth Sci. 410 (2), 1109–1111 (2006).

    Article  Google Scholar 

  29. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, D. V. Buntov, and A. V. Sokolov, “The specific charge of saltation sand particles in arid territories,” Dokl. Earth Sci. 456 (4), 700–704 (2014).

    Article  Google Scholar 

  30. B. Li and C. McKenna Neuman, “Boundary-layer turbulence characteristics during aeolian saltation,” Geophys. Res. Lett. 39 (11), LII402 (2012).

    Google Scholar 

  31. R. L. Martin, T. E. Barchyn, C. H. Hugenholtz, and D. J. Jerolmack, “Timescale dependence of aeolian sand flux observation under atmospheric turbulence,” J. Geophys. Res. 117, DI6205 (2011).

    Google Scholar 

  32. D. Liu, M. Ishizuka, M. Mikami, and Y. Shao, “Turbulent characteristics of saltation and uncertain of saltation model parameters,” Atmos. Chem. Phys. 18, 7595–7606 (2018).

    Article  Google Scholar 

  33. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “Vertical profile of saltating particle concentration over semidesert area,” IOP Conf. Ser.: Earth Environ. Sci. 606, 012015 (2020).

  34. A. V. Karpov, R. A. Gushchin, and O. I. Datsenko, “Analysis of variations in the saltating sand grain transport velocity,” Atmos. Oceanic Opt. 30 (3), 456–461 (2017).

    Article  Google Scholar 

  35. A. V. Karpov, G. I. Gorchakov, R. A. Gushchin, and O. I. Datsenko, “Aleurite particle saltation modeling,” Proc. SPIE: Int. Soc. Opt. Eng. 11208, 112084Y (2020).

  36. D. Tong and N. Huang, “Numerical simulation of saltating particles in atmospheric boundary layer over flat bed sand ripples,” J. Geophys. Res. 117, DI6205 (2012).

    Google Scholar 

  37. M. Gordon and C. McKenna Neuman, “A study of particle splash on developing ripple forms for two bed materials,” Geomorphology 129, 79–91 (2011).

    Article  Google Scholar 

  38. G. I. Gorchakov, A. V. Karpov, G. A. Kuznetsov, and D. V. Buntov, “Quasiperiodic saltation in the windsand flux over desertified areas,” Atmos. Oceanic Opt. 29 (6), 501–506 (2016).

    Article  Google Scholar 

  39. G. I. Gorchakov and K. A. Shukurov, “Fluctuations in submicron-aerosol concentration under convective conditions,” Izv., Atmos. Ocean. Phys. 39 (1), 75–86 (2003).

    Google Scholar 

  40. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “Wind effect on the size distribution of saltating particles,” Atmos. Oceanic Opt. 33 (2), 198–205 (2020).

    Article  Google Scholar 

  41. G. I. Gorchakov, A. V. Karpov, R. A. Gushchin, O. I. Datsenko, and D. V. Buntov, “Vertical profiles of the saltating particle concentration on a desertified area,” Dokl. Earth Sci. 496 (2), 119–124 (2021).

    Article  Google Scholar 

  42. J. F. Kok and N. O. Renno, “A comprehensive numerical model of steady state saltation (COMCALT),” J. Geophys. Res. 114, D17204 (2009).

    Article  Google Scholar 

  43. S. L. Namikas, “Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach,” Sedimentology 50, 303–326 (2003).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-05-00758.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. I. Gorchakov, A. V. Karpov, R. A. Gushchin, O. I. Datsenko or D. V. Buntov.

Additional information

Translated by V. Arutyunyan

This paper was prepared based on an oral report presented at the All-Russia Conference on Turbulence, Dynamics of Atmosphere and Climate dedicated to the memory of Academician A.M. Obukhov (Moscow, November 10–12, 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Karpov, A.V., Gushchin, R.A. et al. Vertical Distribution of Aleurite and Sand Particles in Windsand Flux over a Desertified Area. Izv. Atmos. Ocean. Phys. 57, 486–494 (2021). https://doi.org/10.1134/S0001433821050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821050078

Keywords:

Navigation