Skip to main content
Log in

A Simple Description of the Turbulent Transport in a Stratified Shear Flow as Applied to the Description of Thermohydrodynamics of Inland Water Bodies

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A way to parameterize the turbulent Prandtl number is proposed based on the model of turbulent transport in a stratified fluid, which allows for the two-sided transformation of the kinetic and potential energies of turbulent fluctuations. Numerical experiments aimed at studying the influence of the proposed parameterization on characteristic features of thermohydrodynamic processes in inland water bodies have been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Later, in works by S.S. Zilitinkevich’s group [26, 27], the theory of turbulent closure was proposed. It is based on balance equations for the kinetic and potential energy of turbulence, turbulent momentum fluxes, potential temperature, and relaxation equation for the turbulent time scale. This model also allows one to remove restrictions on the existence of turbulence at large Reynolds numbers.

REFERENCES

  1. Persson, T., Evaporation and Heat-Flux Aggregation in Heterogeneous Boreal Landscape, D. Phil. Dissertation, Uppsala: Uppsala University, 2004.

  2. Eerola, K., Rontu, L., Kourzeneva, E., Pour, H.K., and Duguay, C., “Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation – a case study using a limited area model,” Tellus A, 2014, vol. 66, pp. 1–17.

    Article  Google Scholar 

  3. Stepanenko, V.M., and Mikushin, D.N., “Numerical simulation of mesoscale dynamics of the atmosphere and pollutant transfer over a hydrologically inhomogeneous surface,” Vych. Tekhnol., 2008, vol. 13, pp. 104–110.

    Google Scholar 

  4. Stepanenko, V.M., Miranda, P.M., and Lykosov, V.N., “Numerical simulation of mesoscale interaction of the atmosphere with a hydrologically inhomogeneous land,” Vych. Tekhnol., 2006, vol. 11, pp. 118–127.

    Google Scholar 

  5. Tsuang, B.-J., Tu, C.-J. and Arpe, K., Lake Parameterization for Climate Models, Hamburg: Max Planck Institute for Meteorology, 2001.

    Google Scholar 

  6. Mironov, D., Terzhevik, A., Beyrich, F., Golosov, S., Haise, E., Kirillin, G., Kourzeneva, E., Ritter, B., and Schneider, N., “Parameterization of lakes in numerical weather prediction: description of a lake model, single-column tests, and implementation into the limited-area NWP model,” Boundary-Layer Meteorol., 2006, Spec. Issue.

  7. Long, Z., et al., “Northern lake impacts on local seasonal climate,” J. Hydrometeorol., 2007, vol. 8 (4), 881–896.

    Article  Google Scholar 

  8. Ljungemyr, P., Gustafsson, N., and Omstedt, A., “Parameterization of lake thermodynamics in a high-resolution weather forecasting model,” Tellus A, 1996, vol. 48, pp. 608–621.

    Article  Google Scholar 

  9. Mackay, M., “Modeling the regional climate impact of boreal lakes,” Geophys. Res. Abstr., 2006, vol. 8, pp. 05405.

    Google Scholar 

  10. Hostetler, S.W., Bates, G.T., and Giorgi, F., “Interactive coupling of a lake thermal model with a regional climate model,” J. Geophys. Res. 1993, vol. 98D, pp. 5045–5057.

    Article  Google Scholar 

  11. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika. Chast’ 1 (Statistical Hydromechanics. Part 1), Golitsyn, G.S., Ed., Moscow: Nauka, 1965, p. 333.

    Google Scholar 

  12. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika. Chast’ 1 (Statistical Hydromechanics. Part 1), Golitsyn, G.S., Ed., Moscow: Nauka, 1965, pp. 318–325.

    Google Scholar 

  13. Stepanenko, V.M., Numerical modeling of interactions between the atmosphere and land water bodies, Doctoral (Math.-Phys.) Dissertation, Moscow, 2007, pp. 27–28.

  14. Mellor, C.L. and Yamada, T., “A hierarchy of turbulence closure models for planetary boundary layers,” J. Atmos. Sci., 1974, vol. 31, pp. 1791–1806.

    Article  Google Scholar 

  15. Lykossov, V.N., “On the problem of closure of turbulent boundary layer models using equations for the kinetic energy of turbulence and the rate of its dissipation,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1992, vol. 28, pp. 696–704.

    Google Scholar 

  16. Rodi, W., in Prediction Methods for Turbulent Flows, Kollmann, W., Ed., London: Hemisphere, 1980.

    Google Scholar 

  17. Yakovenko, S.N., “Budget of equations for Reynolds stresses in the region of turbulence arising from the breaking of internal waves,” Vestnik Novosib. Gos. Univ. Ser.: Fiz., 2012, vol. 7, no. 4, pp. 87–95.

    Google Scholar 

  18. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika. Chast’ 1 (Statistical Hydromechanics. Part 1), Golitsyn, G.S., Ed., Moscow: Nauka, 1965, pp. 338–437.

    Google Scholar 

  19. Kondo, B. and Curry, J.A., “Heat and momentum transfer under strong stability in the atmospheric surface layer,” J. Atmos. Sci., 2000, vol. 57, pp. 1417–1423.

    Google Scholar 

  20. Strang, E.J. and Fernando, H.J., “Vertical mixing and transports through a stratified shear layer,” J. Phys. Oceanogr., 2001, vol. 31, pp. 2026–2048.

    Article  Google Scholar 

  21. Stretch, D.D., Rot, J.W. et al., in 14th Australasian Fluid Mech. Conf. (Adelaide, Australia, 10–14 December 2001), pp. 625–628.

  22. Kantha, L. and Clayson, S., “An improved mixed layer model for geophysical applications,” J. Geophys. Res., 1994, vol. 99, no. C12, pp. 25235–25266.

    Article  Google Scholar 

  23. Mellor, G. and Yamada, T., “Development of a turbulence closure model for geophysical problems,” Rev. Geophys. Space Phys., 1982, vol. 20, no. 4, pp. 851–875.

    Article  Google Scholar 

  24. Baas, P., de Roode, S., and Lenderink, G., “The scaling behaviour of a turbulent kinetic energy closure model for stably stratified conditions,” Boundary-Layer Meteorol., 2008, vol. 127, pp. 17–36.

    Article  Google Scholar 

  25. U. Schumann and T. Gerz, “Turbulent mixing in stably stratified shear flows,” J. Appl. Meteorol., 1996, vol. 34, pp. 33–48.

    Article  Google Scholar 

  26. Zilitinkevich, S.S., Elperin, T., Kleeorin, N., and Rogachevskii, I., “Energy- and Flux-Budget (EFB) turbulence closure models for stably-stratified flows. Part I: Steady-state, homogeneous regimes,” Boundary-Layer Meteorol., 2007, vol. 125, pp. 167–191.

    Article  Google Scholar 

  27. Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau, I., “A hierarchy of Energy- and Flux-Budget (EFB) turbulence closure models for stably-stratified geophysical flow,” Boundary-Layer Meteorol., 2013, vol. 146, pp. 341–373.

    Article  Google Scholar 

  28. Ostrovskii, L.A. and Troitskaya, Yu.I., “Model of turbulent transfer and the dynamics of turbulence in a stratified shear flux,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1987, no. 3, pp. 101–104.

  29. Lundgren, T.S., “Distribution functions in the statistical theory of turbulence,” Phys. Fluids, 1967, vol. 10, p. 969.

    Article  Google Scholar 

  30. Vlasov, A.A., Statisticheskie funktsii raspredeleniya (Statistical Distribution Functions), Moscow: Nauka, 1966.

  31. Mortikov, E.V., “Numerical simulation of the motion of an ice keel in stratified flow,” Izv., Atmos. Oceanic Phys., 2016, vol. 52, pp. 108–115.

    Article  Google Scholar 

  32. ortikov, E.V., Glazunov, A.V. and Lykosov, V.N., “Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations,” Russ. J. Num. Anal. Math. Modell., 2019, vol. 34, no. 2, pp. 1–14

    Article  Google Scholar 

  33. Gladskikh, D.S., Stepanenko, V.M., and Mortikov, E.M., “On the influence of the horizontal dimensions of inland water bodies on the thickness of the upper mixed layer,” Vodn. Resur., 2021 (in press).

  34. Monin, A.S. and Ozmidov, R.V., Okeanskaya turbulentnost’ (Ocean Turbulence) Leningrad: Gidrometeoizdat, 1981, pp. 26–29, 237–240.

  35. Sukoriansky, S., Galperin, B., and Perov, V., “A quasi-normal scale elimination model of turbulence and its application to stably stratified flows,” Nonlin. Proc. Geophys., 2006, vol. 13, pp. 9–22.

    Article  Google Scholar 

  36. Li, D., “Turbulent Prandtl number in the atmospheric boundary layer – where are we now?,” Atmos. Res., 2019, vol. 216, no. 1, pp. 86–105.

    Article  Google Scholar 

  37. Kays, W., “Turbulent Prandtl number – where are we?,” J. Heat Transfer, 1994, vol. 116, pp. 284–295.

    Article  Google Scholar 

  38. Goudsmit, G.-H., Burchard, H. Peeters, F., and Wuest, A., “Application of k-eps turbulence models to enclosed basins: The role of internal seiches,” J. Geophys. Res., 2002, vol. 107, no. C12, p. 3230.

    Google Scholar 

  39. Karpowicz, M., and Ejsmont-Karabin, J., “Effect of metalimnetic gradient on phytoplankton and zooplankton (Rotifera, Crucstacea) communities in different trophic conditions,” Environ. Monit. Assess., 2017, vol. 189, no. 8, p. 367.

    Article  Google Scholar 

  40. Heiskanen, J.J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M., Miettinen, H., Sandstrom, H., Eugster, W., Leppäranta, M., Järvinen, H., Vesala, T., and Nordbo, A., “Effects of water clarity on lake stratification and lake-atmosphere heat exchange,” J. Geophys. Res.: Atmos., 2015, vol. 120, no. 5, pp. 7412–7428.

    Article  Google Scholar 

  41. Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T., “LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes,” Geosci. Model Dev., 2016, vol. 9, no. 5, pp. 1977–2006.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 18-05-00292, 18-05-60299, and 20-05-00776, as well as by grants of the President of the Russian Federation for the state support of young Russian scientists MK-1867.2020.5 and MD-1850.2020.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Gladskikh.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soustova, I.A., Troitskaya, Y.I., Gladskikh, D.S. et al. A Simple Description of the Turbulent Transport in a Stratified Shear Flow as Applied to the Description of Thermohydrodynamics of Inland Water Bodies. Izv. Atmos. Ocean. Phys. 56, 603–612 (2020). https://doi.org/10.1134/S0001433820060109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820060109

Keywords:

Navigation