Skip to main content
Log in

Extreme Climatic Events in the Altai-Sayan Region as an Indicator of Powerful Volcanic Eruptions

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

Analytic data on anomalies of the tree-ring structure of Siberian larch on the transect, passing through the Russian part of the Altai-Sayan Mountain Region from the west to the east along the top forest limit, are given for the first time. Four extreme events (1783–1785, 1788–1789, 1812–1814, and 1884) have been determined by a microscopic analysis of the anatomic structure of tree rings (identification of frost, light-colored, and missing rings and fluctuations in wood density). These were periods of strong cooling in almost the entire area of the Altai-Sayan Mountain Region. The data correspond to archived historical materials. A comparison of dates of extreme cold periods with data on volcanic eruptions, the emissions of which reached the stratosphere (the Volcanic Explosivity Index VEI ≥ 4), has shown that they coincide with periods of the awakening of volcanoes such as Laki (1783, VEI = 4), Asama (1783, VEI = 4), Etna (1787, VEI = 4), Soufriere (1812, VEI = 4), Awu (1812, VEI = 4), Suvanosedzima (1813, VEI = 4), and Krakatau (1883, VEI = 6). Nevertheless, the trees in the studied area did not respond to the large eruptions of the Tambora (1815, VEI = 7), Novarupta (1912, VEI = 6), and Pinatubo (1991, VEI = 6) volcanoes. This difference in the reaction of forest vegetation to strong volcanic eruptions of the 19th–20th centuries may be explained by changes in the direction and speed of atmospheric streams, the mosaic pattern of stratospheric aerosols in the north of Central Asia after the eruptions of some volcanoes, and the warmer climate in the 20th century (which reduced the sensitivity of trees at the top forest line in the Altai-Sayan Mountain Region to volcanic eruptions due to the upward shift of the temperature limit of forest development).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Anchukaitis, K.J., Breitenmoser, P., Briffa, K.R., Buchwal, A., Buntgen, U., Cook, E.R., D’Arrigo, R.D., Esper, J., Evans, M.N., Frank, D., Grudd, H., Gunnarson, B.E., Hughes, M.K., Kirdyanov, A.V., Körner, C., Krusic, P.J., Luckman, B., Melvin, T.M., Salzer, M.W., Shashkin, A.V., Timmreck, C., Vaganov, E.A., and Wilson, R.J.S., Tree rings and volcanic cooling, Nature Geosci., 2012, vol. 5, pp. 836–837.

    Article  Google Scholar 

  2. Bronnimann, S. and Kramer, D., Tambora and the “Year Without a Summer” of 1816: A perspective on Earth and Human, 2016.

  3. Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P.J., Esper, J., Kaplan, J.O., de Vaan M.A.C., Luterbacher, J., Wacker, L., Tegel, W., and Kirdyanov, A.V., Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD, Nature Geosci., 2016, vol. 9, pp. 231–236.

    Article  Google Scholar 

  4. Churakova (Sidorova), O.V., Bryukhanova, M.V., Saurer, M., Boettgerd, T., Naurzbaev, M.M., Myglan, V.S., Vaganov, E.A., Hughes, M.K., and Siegwolf, R.T.W., A cluster of stratospheric volcanic eruptions in the AD 530s recorded in Siberian tree rings, Global Planet. Change, 2014, vol. 122, pp. 140–150.

  5. Cole-Dai, J., Mosley-Thompson, E., and Thompson, L., Ice core evidence for an explosive tropical eruption 6 years preceding Tambora, J. Geophys. Res., 1991, vol. 96, no. D9, pp. 17361–17366.

    Article  Google Scholar 

  6. Cook, E.R. and Krusic, P.J., A Tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics (ARSTAN), 2008. http://www.ldeo.columbia.edu/res/fac/trl/public/ publicSoftware.html.

  7. Cook, E.R., Anchukaitis, K.J., Buckley, B.M., D’Arrigo, R.D., Jacoby, G.C., and Wright, W.E., Asian monsoon failure and megadrought during the last millennium, Science, 2010, vol. 328, no. 5977, pp. 486–489.

    Article  Google Scholar 

  8. D’Arrigo, R., Frank, D., Jacoby, G., and Pederson, N., Spatial response to major volcanic events in or about AD 536, 934 and 1258: Frost rings and other dendrochronological evidence from Mongolia and Northern Siberia, Clim. Change, 1999, no. 42, pp. 31–34.

  9. D’Arrigo, R., Jacoby, G., Frank, D., Pederson, N., Cook, E., Buckley, B., Nachin, B., Mijiddorj, R., and Dugarjav, C., 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine, Geophys. Res. Lett., 2001, vol. 28, pp. 543–546.

    Article  Google Scholar 

  10. D’Arrigo, R., Wilson, R., and Anchukaitis, K.J., Volcanic cooling signal in tree ring temperature records for the past millennium, J. Geophys. Res.: Atmos., 2013, vol. 118, no. 16, pp. 9000–9010.

    Google Scholar 

  11. Douglass, A.E., Climatic Cycles and Tree-Growth: A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity, Washington, D.C.: Carnegie Inst, 1919, vol. 1.

    Book  Google Scholar 

  12. Filion, L., Payette, S., Gauthier, L., and Boutin, Y., Light rings in subarctic conifers as a dendrochronological tool, Quat. Res., 1986, vol. 26, no. 2, pp. 272–279.

    Article  Google Scholar 

  13. Fischer, E.M., Luterbacher, J., Zorita, E., Tett, S.F.B., Casty, C., and Wanner, H., European climate response to tropical volcanic eruptions over the last half millennium, Geophys. Res. Lett., 2007, vol. 34, no. 5, L05707.

    Article  Google Scholar 

  14. Fritts, H.C., Tree-Rings and Climate, New York: Academic, 1976.

    Google Scholar 

  15. Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P., Eckert, N., Selenniou, P., Daux, V., Churakova (Sidorova), O.V., Davi, N., Edouard, J.-L., Zhang, Y., Luckman, B.H., Myglan, V.S., Guiot, J., Beniston, M., Masson-Delmotte, V., and Oppenheimer, C., Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records, Nature Geosci., 2017, vol. 10, pp. 123–128.

    Article  Google Scholar 

  16. Gurskaya, M.A., Temperature conditions of the formation of frost damages in conifer trees in the high latitudes of Western Siberia, Biol. Bull., 2014. vol. 41, no. 2, pp. 187–196.

    Article  Google Scholar 

  17. Gurskaya, M.A. and Shiyatov, S.G., Distribution of frost injuries in the wood of conifers, Russ. J. Ecol., 2006, vol. 37, no. 1, pp. 7–12.

    Article  Google Scholar 

  18. Holmes, R.L., Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bull., 1983, vol. 43, pp. 69–78.

    Google Scholar 

  19. Hughes, M., K., Vaganov, E.A., Shiyatov, S.G., Touchan, R., and Funkhouser, G., Twentieth-century summer warmth in northern Yakutia in a 600-year context, Holocene, 1999, vol. 9, no. 5, pp. 603–608.

    Article  Google Scholar 

  20. Izmenenie klimata i bioraznoobrazie Rossiiskoi chasti Altae-Sayanskogo ekoregiona (Climate Changes and Biodiversity in the Russian Part of the Altai–Sayan Ecological Region), Krasnoyarsk: Inst. lesa im. V.N. Sukacheva SO RAN, 2013.

  21. Jacoby, G.C., Workman, K.W., and Darrigo, R.D., Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit, Quat. Sci. Rev., 1999, vol. 18, no. 2, pp. 1365–1371.

    Article  Google Scholar 

  22. Jones, P.D., Briffa, K.R., and Schweingruber, F.H., Tree-ring evidence of the widespread effects of explosive volcanic eruptions, Geophys. Res. Lett., 1995, vol. 22, no. 11, pp. 1333–1336.

    Article  Google Scholar 

  23. Khantemirov, R.M., Dynamics tree vegetation and climate changes in northern West Siberia in the Holocene, Extended Abstract of Doctor of Sci. (Biol.) Dissertation, Ekaterinburg, 2009.

  24. Khantemirov, R.M., Gorlanova, L.A., Surkov, A.Yu., and Shiyatov, S.G., Extreme climate events on Yamal for the last 4100 years according to dendrochronological data, Izv. Ross. Akad. Nauk, Ser. Geogr., 2011, no. 2, pp. 89–102.

  25. Man, W., Zhou, T., and Jungclaus, J.H., Effects of large volcanic eruptions on global summer climate and east Asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations, J. Clim., 2014, vol. 27, no. 19, pp. 7394–7409.

    Article  Google Scholar 

  26. Marusek, J.A., A chronological listing of early weather events. http://wattsupwiththat.files.wordpress.com/ 2011/09/weather1.pdf. Accessed December 30, 2016.

  27. Myglan, V.S., Klimat i sotsium Sibiri v malyi lednikovyi period (Climate and Social Medium in Siberia in the Low Ice Age), Krasnoyarsk: Sib. fed. univ., 2010.

  28. Naurzbaev, M.M., Vaganov, E.A., and Sidorova, O.V., Variability of the air temperature in the north of Eurasia inferred from millennial tree-ring chronologies, Kriosfera Zemli, 2003, vol. 7, no. 2, pp. 84–91.

    Google Scholar 

  29. Naurzbaev, M.M., Vaganov, E.A., Sidorova O.V., and Sclnveingruber F.H., Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series, Holocene, 2002, vol. 12, no. 6, pp. 727–736.

    Article  Google Scholar 

  30. Olivier, S., Blaser, C., Brutsch, S., Frolova, N., Gaggeler, H., Henderson, K.A., Palmer, A.S., Papina, T., and Schwikowski, M., Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai, J. Geophys. Res., 2006, vol. 111, no. D5, D05309.

    Article  Google Scholar 

  31. Rampino, M.R. and Self, S., The atmospheric effects of El Chichon, Sci. Am., 1984, no. 250, pp. 48–57.

  32. Ridley, D.A., Solomon, S., Barnes, J.E., Burlakov, V.D., Deshler, T., Dolgii, S.I., Herber, A.B., Nagai, T., Neely, R.R., Nevzorov, A.V., Ritter, C., Sakai, T., Santer, B.D., Sato, M., Schmidt, A., Uchino, O., and Vernier, J.P., Total volcanic stratospheric aerosol optical depths and implications for global climate change, Geophys. Res. Lett., 2014, vol. 42, no. 22, pp. 7763–7769.

    Article  Google Scholar 

  33. Rinn, F., TSAP V 3.6 Reference Manual: Computer Program for Tree-Rings Analysis and Presentation, Heidelberg: Frank Rinn Distribution, 1996.

    Google Scholar 

  34. Robock, A., Volcanic eruptions and climate, Rev. Geophys., 2000, vol. 38, no. 2, pp. 191–219.

    Article  Google Scholar 

  35. Salzer, M.W. and Hughes, M.K., Volcanic eruptions over the last 5000 years from high elevation tree-ring widths and frost rings, in Tree Rings and Natural Hazards: A State-of-Art, Stoffel, M., Bollshweiler, M., Butler, D.R., and Luckman, B.H., Eds., Berlin: Springer, 2010, pp. 469–483.

    Google Scholar 

  36. Schweingruber, F.H., Wood Structure and Environment, Berlin: Springer, 2007.

    Google Scholar 

  37. Self, S., Zhao, J.X., Holasek, R.E., Torres, R.C., and King, A.J., The atmospheric impact of the 1991 Mount Pinatubo eruption, 1996, in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, Newhall, C.G. and Punongbayan, R., Eds., Quezon City: Philippine Institute of Volcanology and Seismology, 1996, pp. 1089–1115.

    Google Scholar 

  38. Sidorova, O.V. and Naurzbaev, M.M., Response of Larix cajanderi to climatic changes at the upper timberline and in the Indigirka River valley, Lesovedenie, 2002, no. 2, pp. 73–75.

  39. Sidorova, O.V., Naurzbaev, M.M., and Vaganov, E.A., Response of tree-ring chronology in Northern Eurasia to powerful volcanic eruptions, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Problems of Ecological Monitoring and Modeling of Ecosystems), 2005, vol. 20, pp. 60–72.

  40. Sidorova, O.V., Saurer, M., Myglan, V.S., Eichler, A., Schwikowski, M., Kirdyanov, A.V., Bryukhanova, M.V., Gerasimova, O.V., Kalugin, I.A., Daryin, A.V., and Siegwolf, R.T.W., A multi-proxy approach for revealing recent climatic changes in the Russian Altai, Clim. Dyn., 2012, vol. 38, nos. 1–2, pp. 175–188.

    Article  Google Scholar 

  41. Sigl, M., Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O.J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D.R., Pilcher, J.R., Salzer, M., Schüpbach, S., Steffensen, J.P., Vinther, B.M., and Woodruff, T.E., Timing and climate forcing of volcanic eruptions for the past 2500 years, Nature, 2015, vol. 523, pp. 543–549.

    Article  Google Scholar 

  42. Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B.H., Oppenheimer, C., Lebas, N., Beniston, M., and Masson-Delmotte, V., Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1500 years, Nature Geosci., 2015, vol. 8, pp. 784–788.

    Article  Google Scholar 

  43. Taynik, A.V., Myglan, V.S., Barinov, V.V., Oidupaa, O.Ch., and Nazarov, A.N., The growth of Siberian larch (Larix sibirica Ldb.) at the upper forest boundary in the Republic of Tyva, Geogr. Prir. Resur., 2015a, no. 2, pp. 91–99.

  44. Taynik, A.V., Myglan, V.S., Barinov, V.V., Nazarov, A.N., Agatova, A.R., and Nepop, R.K., The growth of Siberian larch (Larix sibirica Ldb.) at the upper forest boundary in the Altai Republic, Izv. Ross. Akad. Nauk, Ser. Geogr., 2015b, no. 6, pp. 75–85.

  45. Taynik, A.V., Barinov, V.V., Oidupaa, O.C., Myglan, V.S., Reinig, F., and Büntgen, U., Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai–Sayan Mountains, Dendrochronologia, 2016, vol. 39, pp. 10–16.

    Article  Google Scholar 

  46. Tardif, J.C., Girardin, M.P., and Conciatori, F., Light rings as bioindicators of climate change in interior North America, Global Planet. Change, 2011, nos. 1–2, pp. 134–144.

  47. The economic state of Tobol’sk newcomers, Sib. Zhizn’, 1899, no. 247, p. 3.

  48. Thordarson, T. and Self, S., Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment, J. Geophys. Res., 2003, vol. 108, no. D1, 4011.

    Article  Google Scholar 

  49. Tishin, D.V., Dendroekologiya (metodika drevesno-kol’tsevogo analiza): Ucheb.-metod. posobie (Dendrochronology (A Tree-Ring Analysis Technique): An Teaching Guide), Kazan: Kazan. fed. univ., 2015.

  50. Vaganov, E.A. and Shashkin, A.V., Rost i struktura godichnykh kolets khvoinykh (The Growth and Structure of Annual Rings of Conifers), Novosibirsk: Nauka, 2000.

  51. Vaganov, E.A., Kruglov, V.B., and Vasil’ev, V.G., Dendrokhronologiya (Dendrochronology), Krasnoyarsk: SFU, 2008.

    Google Scholar 

  52. Yalcin, K., Wake, C.P., Kreutz, K.J., Germani, M.S., and Whitlow, S.I., Ice core evidence for a second volcanic eruption around 1809 in the northern hemisphere, Geophys. Res. Lett., 2006, vol. 33, no. 14, L14706.

    Article  Google Scholar 

  53. Worldwide Holocene volcano and eruption information: Smithsonian Institution, Global Volcanism Program, 2013. http://volcano.si.edu/list_volcano_holocene. cfm. Accessed October 26, 2016.

  54. Zielinski, G.A., Use of paleo-records in determining variability within the volcanism-climate system, Quarter. Sci. Rev., 2000, nos. 1–5, pp. 417–438.

Download references

ACKNOWLEDGMENTS

Dendrochronologic and climatic researches were supported by the Russian Scientific Foundation, project no. 15-14-30011. The assessment of the correlation with volcanic eruptions was supported by the Russian Foundation for Basic Research, projects nos. 16-55-76012 ERA_a and 16-05-01035), state tasks nos. 5.6818.2017/6.7 and 5.3508.2017/PCh, and the ERANet RUS plus project no. SNF IZRPZ0_164735.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Barinov, V. S. Myglan, A. V. Taynik, O. Ch. Oidupaa, A. R. Agatova or O. V. Churakova (Sidorova).

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barinov, V.V., Myglan, V.S., Taynik, A.V. et al. Extreme Climatic Events in the Altai-Sayan Region as an Indicator of Powerful Volcanic Eruptions. Izv. Atmos. Ocean. Phys. 54, 1449–1459 (2018). https://doi.org/10.1134/S000143381810002X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381810002X

Keywords:

Navigation