Skip to main content
Log in

Influence of Feedbacks in the Climate–Energetics System on the Intensity of an Urban Heat Island

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Both horizontal and vertical heat exchanges and feedbacks between air temperature and anthropogenic heat fluxes significantly affect the characteristics of the urban heat island (UHI). The UHI intensity depends, in particular, on the ratio between the scales LA (area of anthropogenic forcing) and Lγ (distance passed by an air particle of the oncoming stably stratified flow before its temperature approaches air temperature within the UHI). Both advection and feedback effects may be estimated based on the equation for the local heat balance of the underlying surface. In this case, heat advection is taken into account by calculating temperatures individually for the atmospheric boundary layer and the surface of the urban canopy layer. The estimates show that the asymptotics of strong advection is more characteristic of a typical city. However, under weak winds, with consideration for the feedback between air temperature and anthropogenic heat flux, some deviations from this asymptotics are probable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Howard, The Climate of London, Deduced from Meteorological Observations Made at Different Places in the Neighbourhood of the Metropolis, Vol. 1 (W. Phillips, London, 1818).

    Google Scholar 

  2. P. A. Kratzer, Das Stadtklima (Vieweg, Braunschweig; 1956; Inostrannaya literatura, Moscow, 1958).

    Google Scholar 

  3. F. R. Ball, “Control of inversion height by surface heating,” Q. J. R. Meteorol. Soc. 86 (370), 483–494 (1960).

    Article  Google Scholar 

  4. P. W. Summers, “An urban heat island model: Its role in air pollutions problems with applications to Montreal,” in First Canadian Conf. of Micrometeorology (CMOS, Toronto, 1965).

    Google Scholar 

  5. D. M. Leahey and J. P. Friend, “A method for predicting the depth of the mixing layer over an urban heat island with application to New York City,” J. Appl. Meteorol. 10, 1162–1173 (1971).

    Article  Google Scholar 

  6. T. R. Oke, “City size and the urban heat island,” Atmos. Environ. 7, 769–779 (1973).

    Article  Google Scholar 

  7. T. R. Oke, “The distinction between canopy and boundary layer urban heat islands,” Atmosphere 14 (4), 268–277 (1976).

    Google Scholar 

  8. G. E. Landsberg, The Urban Climate (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  9. T. R. Oke, “The energetic basis of the urban heat island,” Q. J. R. Meteorol. Soc. 108 (455), 1–24 (1982).

    Google Scholar 

  10. T. R. Oke, “The urban energy balance,” Prog. Phys. Geogr. 2 (4), 471–508 (1988).

    Article  Google Scholar 

  11. M. Roth and T. R. Oke, “Comparison of modelled and “measured” heat storage in suburban terrain," Beitr. Phys. Atmos. 67 (2), 149–156 (1994).

    Google Scholar 

  12. A. J. Arnfield, “Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23, 1–26 (2003).

    Article  Google Scholar 

  13. The Urban Surface Energy Budget and Mixing Height in European Cities: Data, Models and Challenges for Urban Meteorology and Air Quality (Final Report of Working Group 2 of COST-715 Action), M. Pringer and S. Joffre, Eds. (Demetra, 2005).

  14. J. F. Barlow, “Progress in observing and modelling the urban boundary layer,” Urban Clim. 10, 216–240 (2014).

    Article  Google Scholar 

  15. L. Allen, F. Lindberg, and C. S. B. Grimmond, “Global city scale urban anthropogenic heat flux: Model and variability,” Int. J. Climatol. 31, 1990–2005 (2011).

    Article  Google Scholar 

  16. G. Mills, “Urban climatology: History, status and prospects,” Urban Clim. 10 (3), 479–489 (2014). doi 10.1016/j.uclim.2014.06.004

    Article  Google Scholar 

  17. A. S. Ginzburg and P. F. Demchenko, “Air temperature and energy consumption feedbacks within urbanized areas,” Izv., Atmos. Ocean. Phys. 53 (5), pp. 487–494 (2017).

    Article  Google Scholar 

  18. U.S. Environmental Protection Agency, Reducing urban heat island: Compendium of strategies (draft). https://doi.org/www.epa.gov/heat-islands/heat-island-compendium.

  19. I. I. Mokhov, “Link of intensity of heat-island effect of a city with its size and population,” Dokl. Earth Sci. 427 (6), 997–1000 (2009).

    Article  Google Scholar 

  20. B. Tremeac, P. Bousquet, S. de Munck, et al., “Influence of air conditioning management on heat island in Paris air street temperatures,” Appl. Energy 95, 102–110 (2012).

    Article  Google Scholar 

  21. A. S. Ginzburg, “Regional air temperature maxima and the possibility of their simple energy-balance estimates,” Izv., Atmos. Ocean. Phys. 47 (6), 665–671 (2011).

    Article  Google Scholar 

  22. A. S. Ginzburg, I. N. Belova, and N. V. Raspletina, “Anthropogenic heat fluxes in urban agglomerations,” Dokl. Earth Sci. 439 (1), 1006–1009 (2011).

    Article  Google Scholar 

  23. G. G. Aleksandrov, I. N. Belova, and A. S. Ginzburg, “Anthropogenic heat flows in the capital agglomerations of Russia and China,” Dokl. Earth Sci. 457 (1), 850–854 (2014).

    Article  Google Scholar 

  24. A. S. Ginzburg, O. A. Reshetar’, and I. N. Belova, “Impact of climatic factors on energy consumption during the heating season,” Therm. Eng. 63 (9), 621–627.

  25. C. S. B. Grimmond, H. A. Cleugh, and T. R. Oke, “An objective urban heat storage model and its comparison with other schemes,” Atmos. Environ. 25B (3), 311–326 (1991).

    Article  Google Scholar 

  26. C. S. B. Grimmond and T. R. Oke, “Heat storage in urban areas: Local-scale observations and evaluation of a simple model,” J. Appl. Meteorol. 38, 922–940 (1999).

    Article  Google Scholar 

  27. T. Sun, Z.-H. Wang, W. Oechel, and S. Grimmond, “The analytical objective hysteresis model (AnOHV v.1.0): Methodology to determine bulk storage heat flux coefficients,” Geosci. Model Dev. 10, 2875–2890 (2017).

    Article  Google Scholar 

  28. M. Kanda, M. Kanega, T. Kawai, and R. Moriwaki, “Roughness length for momentum and heat derived from outdoor urban scale models,” J. Appl. Meteorol. Climatol. 46, 1067–1079 (2007).

    Article  Google Scholar 

  29. D. L. Y. Zhang, Y. X. Shou, R. R. Diskerson, and J. Chen, “Impact of upstream urbanization on the urban heat island effects along Washington–Baltimore corridor,” J. Appl. Meteorol. Climatol. 50, 2012–2029 (2011).

    Article  Google Scholar 

  30. I. A. Renfrew and J. C. King, “A simple model of the convective internal boundary layer and its application to surface heat flux estimated within polynyas,” Boundary-Layer Meteorol. 94, 335–356 (2000).

    Article  Google Scholar 

  31. J. R. Garrat, “The internal boundary layer—A review,” Boundary-Layer Meteorol. 50 (1–4), 171–203 (1990).

    Article  Google Scholar 

  32. R. Van Driel and H. J. J. Jonker, “Convective boundary layer driven by nonstationary surface heat fluxes,” J. Atmos. Sci. 68, 727–738 (2011).

    Article  Google Scholar 

  33. S. S. Zilitinkevich, Atmospheric Turbulence and Planetary Boundary Layers (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  34. P. F. Demchenko, “Integral model of atmospheric planetary boundary layer with nonstationary equations for turbulent kinetic energy and its dissipation rate,” Izv. Akad. Nauk: Fiz. Atmos. Okeana 29 (3), 315–320 (1993).

    Google Scholar 

  35. S. Kotthaus and C. S. B. Grimmond, “Energy exchange in dense urban environment. Part I: Temporal variability of long-term observations in central London, Urban Clim. 10, 2261–2280 (2014).

    Google Scholar 

  36. T.-W. Lee, J. Y. and Z.-H. Wang, “Scaling of the urban heat island intensity using time-dependent energy balance,” Urbane Clim. 2, 16–24 (2012).

    Article  Google Scholar 

  37. Z.-H. Wang and Q. Li, “Thermodynamic characterization of urban nocturnal cooling,” Heliyon 3 (2017). doi 10.1016/j.heliyon.2017.e00290

  38. V. V. Klimenko, A. S. Ginzburg, P. F. Demchenko, et al., “Impact of urbanization and climate warming on energy consumption in large cities,” Dokl. Phys. 61 (10), 521–525 (2016).

    Article  Google Scholar 

  39. J. Hansen, A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, “Climate sensitivity: Analysis of feedback mechanisms,” in Climate Processes and Climate Sensitivity (Am. Geophys. Union, Washington, D.C., 1984), Vol. 29, pp. 130–134.

    Article  Google Scholar 

  40. S. Bony, R. Colman, V. Kattsov, et al., “How well do we understand and evaluate climate feedback processes?,” J. Clim. 19, 3445–3482 (2006).

    Article  Google Scholar 

  41. M. G. Flanner, “Integrating anthropogenic heat flux with global climate models,” Geophys. Res. Lett. 36, L02801 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Demchenko.

Additional information

Original Russian Text © P.F. Demchenko, A.S. Ginzburg, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 4, pp. 371–380.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demchenko, P.F., Ginzburg, A.S. Influence of Feedbacks in the Climate–Energetics System on the Intensity of an Urban Heat Island. Izv. Atmos. Ocean. Phys. 54, 313–321 (2018). https://doi.org/10.1134/S0001433818040217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818040217

Keywords

Navigation