Skip to main content
Log in

On One Estimate of the Boundary of the Rossby Regime Zone in the Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A two-zone model of the atmospheric circulation over the hemisphere is considered. The geographic latitude φ of the boundary between the Rossby circulation regime zone at middle and high latitudes and the Hadley circulation regime zone at low latitudes serves as a model variable. The closeness between the actual and reference (exponential) air-mass distribution over the hemisphere, with respect to Ertel’s modified potential vorticity (MPV), is accounted for. The informational entropy of the statistical MPV distribution in the hemispheric atmosphere and the informational entropy of the eddy regime in the basic storm-track zone are used to determine a statistically (climatically) equilibrium value of φ. The question of atmospheric blocking over the hemisphere is considered using the proposed statistical–dynamical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Obukhov, “On the question of geostrophic wind,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 13 (4), 281–306 (1949).

    Google Scholar 

  2. A. M. Obukhov, “On the dynamics of a stratified fluid,” Dokl. Akad. Nauk SSSR 145 (6), 1239–1242 (1962).

    Google Scholar 

  3. H. Ertel, “Ein neuer hydrodynamischer Wirbelsatz,”Meteorol. Z. 59, 277–281 (1942).

    Google Scholar 

  4. A. M. Obukhov, “Adiabatic invariants of atmospheric processes,” Meteorol. Gidrol., No. 2, 3–9 (1964).

    Google Scholar 

  5. B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the use and significance of isentropic potential vorticity maps,” Q. J. R. Meteorol. Soc. 111 (470), 877–946 (1985).

    Article  Google Scholar 

  6. M. V. Kurgansky and M. S. Tatarskaya, “The potential vorticity concept in meteorology: a review,” Izvestiya, Atmospheric Oceanic Physics 23 (8), 587–606 (1987).

    Google Scholar 

  7. M. S. Tatarskaya, “On the adiabatic invariant distribution in the atmosphere of the Northern Hemisphere,” Izvestiya, Atmospheric Oceanic Physics 15, 67–71 (1978).

    Google Scholar 

  8. M. V. Kurgansky and M. S. Tatarskaya, “Adiabatic invariants in large-scale atmospheric processes,” Izvestiya, Atmospheric Oceanic Physics 26 (12), 894–901 (1990).

    Google Scholar 

  9. A. M. Obukhov, M. V. Kurgansky and M. S. Tatarskaya, “Isentropic analysis of global atmospheric processes using the field of potential vorticity from FGGE data,” Meteorol. Gidrol., No. 8, 111–120 (1988).

    Google Scholar 

  10. M. V. Kurgansky, “The atmospheric vortex charge,” Izvestiya, Atmospheric Oceanic Physics 27 (7), 510–516 (1991).

    Google Scholar 

  11. M. V. Kurgansky and D. S. Prikazchikov, “Potential vorticity as an indicator of seasonal variability of the atmosphere,” Izvestiya, Atmospheric Oceanic Physics 30 (6), 696–703 (1994).

    Google Scholar 

  12. M. V. Kurgansky and I. A. Pisnichenko, “Modified Ertel’s potential vorticity as a climate variable,” J. Atmos. Sci. 57, 822–835 (2000).

    Article  Google Scholar 

  13. C.-G. Rossby, “On the distribution of angular velocity in gaseous envelopes under the influence of large-scale horizontal mixing processes,” Bull. Am. Meteorol. Soc. 28, 53–58 (1947).

    Google Scholar 

  14. E. N. Lorenz, The Nature and Theory of the General Circulation of the Atmosphere (WMO, 1967; Gidrometeoizdat, Leningrad, 1971).

    Google Scholar 

  15. B. J. Hoskins, “Towards a PV-? view of the general circulation,” Tellus AB 43 (4), 27–35 (1991).

    Google Scholar 

  16. R. Hide and I. N. James, “Differential rotation produced by large-scale potential vorticity mixing in a rapidly- rotating fluid,” Geophys. J. R. Astron. Soc. 74, 301–312 (1983).

    Article  Google Scholar 

  17. D. Z. Sun and R. S. Lindzen, “A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere,” J. Atmos. Sci. 51, 757–772 (1994).

    Article  Google Scholar 

  18. D. B. Kirk-Davidoff and R. S. Lindzen, “An energy balance model based on potential vorticity homogenization,” J. Clim. 13, 431–448 (2000).

    Article  Google Scholar 

  19. I. M. Held and A. Y. Hou, “Nonlinear axially symmetric circulations in a nearly inviscid atmosphere,” J. Atmos. Sci. 37, 515–533 (1980).

    Article  Google Scholar 

  20. I. N. James, Introduction to Circulating Atmospheres (Cambridge University Press, Cambridge, UK, 1994).

    Book  Google Scholar 

  21. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge University Press, Cambridge, UK, 2006).

    Book  Google Scholar 

  22. T. Schneider, “The general circulation of the atmosphere,” Annu. Rev. Earth Planet. Sci. 34, 655–688 (2006).

    Article  Google Scholar 

  23. A. M. Yaglom and I. M. Yaglom, Probability and Information (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  24. R. Kleeman, “Measuring dynamical prediction utility using relative entropy,” J. Atmos. Sci. 59, 2057–2072 (2002).

    Article  Google Scholar 

  25. J. Shukla, T. DelSole, M. Fennessy, J. Kinter, and D. Paolino, “Climate model fidelity and projections of climate change,” Geophys. Res. Lett. 33 (7), L07702 (2006).

    Article  Google Scholar 

  26. P. H. Haynes and M. E. McIntyre, “On the conservation and impermeability theorems for potential vorticity,” J. Atmos. Sci. 47, 2021–2031 (1990).

    Article  Google Scholar 

  27. L. R. Lait, “An alternative form for potential vorticity,” J. Atmos. Sci. 51, 1754–1759 (1994).

    Article  Google Scholar 

  28. E. N. Lorenz, “Available potential energy and the maintenance of the general circulation,” Tellus 7, 157–167 (1955).

    Article  Google Scholar 

  29. S. G. Eubank and J. D. Farmer, “Probability, random processes and the statistical description of dynamics,” in Introduction to Nonlinear Physics, Ed. by L. Lam (Springer, New York, 1997), pp. 106–151.

    Chapter  Google Scholar 

  30. H. Flohn, “Tropical circulation patterns: Recent aspects,” in Physical and Dynamic Climatology, Proceedings of the Symposium on Physical and Dynamic Climatology, Leningrad, August 1971, WMO-347 (Gidrometeoizdat, Leningrad, 1974), pp. 180–198.

    Google Scholar 

  31. H. C. Korff and H. Flohn, “Zusammenhang zwischen dem Temperaturgefälle Äquator-Pol und den planetarischen Luftdruckgürteln,” Ann. Meteorol., Neue Folge 4, 163–164 (1969).

    Google Scholar 

  32. N. Saavedra, E. Müller, and A. Foppiano, “Monthlymean rainfall frequency model for Central Chile: Some climatic inferences,” Int. J. Climatol. 22, 1495–1509 (2002).

    Article  Google Scholar 

  33. M. R. Sinclair, “A climatology of anticyclones and blocking for the Southern Hemisphere,” Mon. Weather Rev. 124, 245–263 (1996).

    Article  Google Scholar 

  34. IPCC 2013: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I To the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al., (Cambridge University Press, Cambridge, 2013). 10.1017/CBO9781107415324

    Google Scholar 

  35. I. I. Mokhov, M. G. Akperov, M. A. Prokofyeva, A. V. Timazhev, A. R. Lupo, and H. Le Treut, “Blockings in the Northern hemisphere and Euro-Atlantic region: Estimates of changes from reanalysis data and model simulations,” Dokl. Earth Sci. 449 (2), 430–433 (2013).

    Article  Google Scholar 

  36. I. I. Mokhov and V. K. Petukhov, “Blockings and the tendencies toward their variation,” Dokl. Earth Sci. 357 (9), 1386–1388 (1997).

    Google Scholar 

  37. J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, “The climatology of blocking anticyclones for the Northern and Southern hemispheres: Block intensity as a diagnostic,” J. Clim. 15, 3459–3473 (2002).

    Article  Google Scholar 

  38. T. Woolings and B. Hoskins, “Simultaneous Atlantic–Pacific blocking and the Northern Annular Mode,” Q. J. R. Meteorol. Soc. 134, 1635–1646 (2008).

    Article  Google Scholar 

  39. P. Davini and F. D’Andrea, “Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements?,” J. Clim. 29, 8823–8840 (2016).

    Article  Google Scholar 

  40. I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kurgansky.

Additional information

Original Russian Text © M.V. Kurgansky, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgansky, M.V. On One Estimate of the Boundary of the Rossby Regime Zone in the Atmosphere. Izv. Atmos. Ocean. Phys. 54, 257–264 (2018). https://doi.org/10.1134/S0001433818030118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818030118

Keywords

Navigation