Skip to main content
Log in

Changes of cooling near mesopause under global warming from observations and model simulations

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of joint analysis of temperature variations near mesopause from long-term measurements at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics RAS in 1960–2015 and variations of surface air temperature characterizing global climate change. Together with variations of temperature at the mesopause T ms from measurements of the hydroxyl emissions we analyzed the temperature variations near mesopause T m reduced to the same level of solar activity. The observed strong decrease in temperature near mesopause during last decades, particularly in winter, with its tendency to slow down since the 1980’s is was detected against the background of general increase in the surface air temperature of the Northern Hemisphere T NHs and the Earth as a whole. It was revealed a sharp drop in winter temperature near mesopause in 1970s. and its synchronicity with the shift in climatic features at the surface associated with changes in formation of El Nino events and their impact on the global climate. The general significant negative correlation of temperature variations near mesopause and T NHs detected from 56-year observational data was not accompanied by any significant coherence between the most long-period temperature variations from the cross-wavelet analysis. To assess the possible manifestation of this coherence the results of numerical simulations with a global climate model were used. According to model simulations for the 20–21 centuries taking into account anthropogenic forcings for significant coherence between long-term variations T m and T NHs the prolonged observations are required for temperature near mesopause–about a century or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Roble and R. E. Dickinson, “How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?,” Geophys. Res. Lett. 16, 1441–1444 (1989).

    Article  Google Scholar 

  2. G. S. Golitsyn, A. I. Semenov, N. N. Shefov, et al., “Long-term temperature trends in the middle and upper atmosphere,” Geophys. Res. Lett. 23, 1741–1744 (1996).

    Article  Google Scholar 

  3. I. I. Mokhov and A. V. Eliseev, “Tropospheric and stratospheric temperature annual cycle: Tendencies of change,” Izv., Atmos. Ocean. Phys. 33 (4), 415–426 (1997).

    Google Scholar 

  4. A. I. Semenov, N. N. Shefov, G. V. Givishvili, et al., “Seasonal peculiarities of long-term temperature trends of the middle atmosphere,” Dokl. Earth Sci. 375 (8), 1286–1289 (2000).

    Google Scholar 

  5. A. I. Semenov, N. N. Shefov, E. N. Lysenko, et al., “The season peculiarities of behavior of the long-term temperature trends in the middle atmosphere on the mid-latitudes,” Phys. Chem. Earth 27, 529–534 (2002).

    Article  Google Scholar 

  6. G. Beig, P. Keckhut, R. P. Lowe, et al., “Review of mesospheric temperature trends,” Rev. Geophys. 41 (4), 1015 (2003). doi 10.1029/2002RG000121

    Article  Google Scholar 

  7. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Airglow as an Indicator of the Upper Atmospheric Structure and Dynamics (Geos, Moscow, 2006) [in Russian].

    Google Scholar 

  8. Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, (Cambridge University Press, Cambridge, 2007).

  9. L. Qian, J. Laštovicka, R. G. Roble, et al., “Progress in observations and simulations of global change in the upper atmosphere,” J. Geophys. Res. 116, A00H03 (2011). doi 10.1029/2010JA016317

    Google Scholar 

  10. I. I. Mokhov and A. I. Semenov, “Nonlinear temperature changes in the atmospheric mesopause region of the atmosphere against the background of global climate changes, 1960–2012,” Dokl. Earth Sci. 456 (2), 741–744 (2014).

    Article  Google Scholar 

  11. I. I. Mokhov, “Contemporary climate changes in the Arctic,” Herald Russ. Acad. Sci. 85 (3), 265–271 (2015).

    Article  Google Scholar 

  12. G. Beig, “Long-term trends in the temperature of the mesosphere/lower thermosphere region: 1. Anthropogenic influences,” J. Geophys. Res. 116, A00H11 (2011). doi 10.1029/2011JA016646

    Google Scholar 

  13. G. Beig, “Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response,” J. Geophys. Res. 116, A00H12 (2011). doi 10.1029/2011JA016766

    Google Scholar 

  14. N. L. Bindoff, P. A. Stott, K. M. AchutaRao, et al., “Detection and attribution of climate change: from global to regional,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge University Press, Cambridge, 2013), pp. 867–952.

    Google Scholar 

  15. C.-Y. She, D. A. Krueger, and T. Yuan, “Long-term midlatitude mesopause region temperature trend deduced from quarter century (1990–2014) Na lidar observations,” AnGeo Commun. 33, 363–369 (2015).

    Google Scholar 

  16. E. M. Volodin, V. Ya. Galin, A. V. Gusev, et al., “Earth system model of INM,” Russ. J. Numer. Anal. Math. Modelling 25 (5), 531–545 (2010).

    Google Scholar 

  17. V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined chemistry–climate model of the atmosphere,” Izv., Atmos. Ocean. Phys. 43 (4), 399–412 (2007).

    Article  Google Scholar 

  18. E. M. Volodin and G. Schmitz, “A troposphere–stratosphere–mesosphere general circulation model with parameterization of gravity waves: Climatology and sensitivity studies,” Tellus 53A, 300–316 (2001).

    Google Scholar 

  19. S. Jevrejeva, J. C. Moore, and A. Grinsted, “Influence of the Arctic Oscillation and El Niño–Southern Oscillation (ENSO) on the conditions in the Baltic Sea: The wavelet approach,” J. Geophys. Res. 108 (D21), 4677 (2003). doi 10.1029/2003JD003417

    Article  Google Scholar 

  20. I. I. Mokhov and V. Ch. Khon, “Interannual variability and long-term tendencies of change in atmospheric centers of action in the Northern Hemisphere: Analyses of observational data,” Izv., Atmos. Ocean. Phys. 41 (6), 657–666 (2005).

    Google Scholar 

  21. K. E. Trenberth and T. J. Hoar, “El Niño and climate change,” Geophys. Res. Lett. 24 (23), 3057–3060 (1997).

    Article  Google Scholar 

  22. Y. Zhang, J. M. Wallace, and D. S. Battisti, “ENSOlike interdecadal variability: 1900–93,” J. Clim. 10 (5), 1004–1020 (1997).

    Article  Google Scholar 

  23. G. A. Meehl, A. Hu, and B. D. Santer, “The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability,” J. Clim. 22, 780–792 (2009).

    Article  Google Scholar 

  24. I. I. Mokhov, A. V. Eliseev, and D. V. Khvorostyanov, “Evolution of the characteristics of interannual climate variability associated with the El Niño and La Niña phenomena,” Izv., Atmos. Ocean. Phys. 36 (6), 681–690 (2000).

    Google Scholar 

  25. I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, “Decadal and longer term changes in El Nino–Southern Oscillation characteristics,” Int. J. Climatol. 24, 401–414 (2004).

    Article  Google Scholar 

  26. I. I. Mokhov and D. A. Smirnov, “Study of the mutual influence of the El Niño–Southern Oscillation processes and the North Atlantic and Arctic oscillations,” 42 (5), 598–614 (2006).

    Google Scholar 

  27. I. I. Mokhov and D. A. Smirnov, “Diagnostics of a cause–effect relation between solar activity and the Earth’s global surface temperature,” Izv., Atmos. Ocean. Phys. 44 (3), 263–272 (2008).

    Article  Google Scholar 

  28. I. I. Mokhov and D. A. Smirnov, “Empirical estimates of the influence of natural and anthropogenic factors on the global surface temperature,” Dokl. Earth Sci. 427 (5), 798–803 (2009).

    Article  Google Scholar 

  29. D. A. Smirnov and I. I. Mokhov, “From Granger causality to "long-term causality”: Application to climatic data," Phys. Rev. E 80, 016208 (2009).

    Article  Google Scholar 

  30. I. I. Mokhov and D. S. Smirnov, “Relation between the variations in the global surface temperature, El Niño/La Niña phenomena, and the Atlantic multidecadal oscillation,” Dokl. Earth Sci., 467 (2), 384–388 (2016).

    Article  Google Scholar 

  31. V. I. Perminov, A. I. Semenov, I. V. Medvedeva, and Yu. A. Zheleznov, “Variability of mesopause temperature from the hydroxyl airglow observations over midlatitudinal sites, Zvenigorod and Tory, Russia,” Adv. Space Res. 54, 2511–2517 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Additional information

Original Russian Text © I.I. Mokhov, A.I. Semenov, E.M. Volodin, M.A. Dembitskaya, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 4, pp. 435–444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Semenov, A.I., Volodin, E.M. et al. Changes of cooling near mesopause under global warming from observations and model simulations. Izv. Atmos. Ocean. Phys. 53, 383–391 (2017). https://doi.org/10.1134/S0001433817040090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817040090

Keywords

Navigation