Skip to main content
Log in

Nitrogen dioxide in the air basin of St. Petersburg: Remote measurements and numerical simulation

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of ground-based and satellite spectroscopic measurements of the tropospheric NO2 content near St. Petersburg in January–March 2006 are presented. It is shown that the increased concentrations of NO2 observed in St. Petersburg and its vicinities in this period were caused by NO2 accumulation due to unfavorable weather conditions, which is confirmed by an analysis of meteorological data and the results of a numerical simulation of the dispersion of urban air pollutants. Data from satellite and ground-based measurements agree with each other satisfactorily (a correlation coefficient of 0.5) and with model calculations of tropospheric NO2 conducted for the coordinates of a station of ground-based measurements (a correlation coefficient of 0.6). The HYSPLIT dispersion model also made it possible to estimate the scale of the NO2 spatial-temporal variability in the near-surface layer in the vicinities of St. Petersburg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Goldovskaya, Environmental Chemistry (Mir, Moscow, 2005) [in Russian].

    Google Scholar 

  2. V. B. Milyaev, N. M. Golovina, and A. N. Selyakova, “Analysis of Pollutant Emissions from Point and Mobile Sources on the Territory of the Town of St. Petersburg and Leningrad Region,” in Problems in Atmospheric Air Protection, Collection of Scientific Works (Scientific Research Institute “Atmosfera”, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  3. D. V. Ionov and Yu. M. Timofeev, “Regional Space Monitoring of Nitrogen Dioxide in the Troposphere,” Izv., Atmos. Ocean. Phys. 45(4), 434–443 (2009).

    Article  Google Scholar 

  4. A. Richter, J. P. Burrows, H. Nuss, et al., “Increase in Tropospheric Nitrogen Dioxide over China Observed from Space,” Nature 437, 129–132 (2005). doi: 10.1038/nature04092

    Article  Google Scholar 

  5. R. J. van der A, H. Eskes, K. F. Boersma, et al., “Trends, Seasonal Variability and Dominant NOx Source Derived from a Ten Year Record of NO2 Measured from Space,” J. Geophys. Res. 113, D04302 (2008). doi: 10.1029/2007JD009021

    Article  Google Scholar 

  6. I. B. Konovalov, “Regional Differences in the Decadal Variations of Atmospheric Emissions of Nitrogen Oxides in the European Part of Russia: Results of Inverse Modeling Based on Satellite Data,” Dokl. Earth Sci. 417A(9), 1424–1427 (2007).

    Article  Google Scholar 

  7. D. V. Ionov, “Tropospheric NO2 Trend over St. Petersburg (Russia) as Measured from Space,” Russ. J. Earth Sci. 11, ES4004 (2010). doi: 10.2205/2010ES000437

    Article  Google Scholar 

  8. A. V. Poberovskii, A. V. Shashkin, D. V. Ionov, et al., “NO2 Content Variations near St. Petersburg as Inferred from Ground-Based and Satellite Measurements of Scattered Solar Radiation,” Izv., Atmos. Ocean. Phys. 43(4), 505–513 (2007).

    Article  Google Scholar 

  9. Russia’s Weather Server. http://meteo.infospace.ru/

  10. European Centre for Medium-Range Weather Forecasts, http://www.ecmwf.int

  11. University of Wyoming, Upper Air Data, Soundings. http://weather.uwyo.edu/upperair

  12. St. Petersburg Committee for Nature Use Environmental Protection and Ecological Safety. http://www.infoeco.ru

  13. Health Standards for Maximum Allowable Concentrations of Pollutants in the Atmospheric Air of Populated Places. GN 2.1.6.1338-03. Regulation by Ministry of Health of Russian Federation (30.05.2003).

  14. P. F. Levelt, E. Helserath, G. W. Leppelmeier, et al., “Science Objectives of the Ozone Monitoring Instrument,” IEEE Trans. Geosci. Remote Sens. 44(5), 1199–1208 (2006).

    Article  Google Scholar 

  15. Network for the Detection of Atmospheric Composition Change. http://www.ndacc.org

  16. A. S. Elokhov and A. N. Gruzdev, “Nitrogen Dioxide Column Content and Vertical Profile Measurements at the Zvenigorod Research Station,” Izv., Atmos. Ocean. Phys. 36(6), 763–777 (2000).

    Google Scholar 

  17. V. V. Rozanov, M. Buchwitz, K.-U. Eichmann, et al., “SCIATRAN—A New Radiative Transfer Model for Geophysical Applications in the 240–2400 nm Spectral Region: The Pseudo-Spherical Version,” Adv. Space Res. 29(11), 1831–1835 (2002).

    Article  Google Scholar 

  18. U.S. Standard Atmosphere. http://modelweb.gsfc.nasa.gov/atmos/us_standard.html

  19. L. Denis, H. K. Roscoe, M. P. Chipperfield, et al., “A New Software Suite for NO2 Vertical Profile Retrieval from Ground-Based Zenith-Sky Spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 92(3), 321–333 (2005).

    Article  Google Scholar 

  20. K. S. Law and J. A. Pyle, “Modeling Trace Gas Budgets in the Troposphere. 1. Ozone and Odd Nitrogen,” J. Geophys. Res. 98, 18377–18400 (1993).

    Article  Google Scholar 

  21. J.-C. Lambert, J. Granville, M. van Roozendael, et al., “Global Behavior of Atmospheric NO2 as Derived from the Integrated Use of Satellite, Ground-Based Network and Balloon Observations,” in Atmospheric Ozone. Proceedings of the 19th Quadrennial Ozone Symposium, Sapporo, Hokkaido, Japan, July 3–8, 2000 (NASDA, Sapporo, 2000), pp. 201–202.

    Google Scholar 

  22. E. L. Fleming, S. Chandra, J. J. Barnett, et al., “Zonal Mean Temperature, Pressure, Zonal Wind, and Geopotential Height as Function of Latitude,” Adv. Space Res. 10(12), 11–59 (1990).

    Article  Google Scholar 

  23. V. A. Ivanov and O. V. Postylyakov, “Evaluation of the Integral Content of NO2 in the Atmospheric Boundary Layer from Zenith-Scattered Solar Radiation Observation Data,” Opt. Atmos. 23(6), 471–474 (2010).

    Google Scholar 

  24. R. R. Draxler and G. D. Hess, “An Overview of the HYSPLIT-4 Modelling System for Trajectories, Dispersion and Deposition,” Aust. Meteorol. Mag. 47(4), 295–308 (1998).

    Google Scholar 

  25. Yandex Analytical Center “Yandex.TrafficJam.” http://www.yaprobki.ru/statistics

  26. M. L. Wesely, “Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models,” Atmos. Environ. 23(6), 1293–1304 (1989).

    Article  Google Scholar 

  27. K. F. Boersma, H. J. Eskes, and E. J. Brinksma, “Error Analysis for Tropospheric NO2 Retrieval from Space,” J. Geophys. Res. 109, D04311 (2004). doi: 10.1029/2003JD003962

    Article  Google Scholar 

  28. A. N. Gruzdev and A. S. Elokhov, “Validating NO2 Measurements in the Vertical Atmospheric Column with the OMI Instrument aboard the EOS Aura Satellite against Ground-Based Measurements at the Zvenigorod Scientific Station,” Izv., Atmos. Ocean. Phys. 45(4), 444–455 (2009).

    Article  Google Scholar 

  29. NCEP Global Data Assimilation System. http://ready.arl.noaa.gov/gdas1.php

  30. NCEP/NCAR Global Reanalysis. http://ready.arl.noaa.gov/gbl_reanalysis.php

  31. A. V. Makarova, A. V. Rakitin, D. V. Ionov, et al., “Analysis of Variability of the CO, NO2, and O3 Contents in the Troposphere near St. Petersburg,” Izv., Atmos. Ocean. Phys. 47(4), 468–479 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Ionov.

Additional information

Original Russian Text © D.V. Ionov, A.V. Poberovskii, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 4, pp. 422–433.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionov, D.V., Poberovskii, A.V. Nitrogen dioxide in the air basin of St. Petersburg: Remote measurements and numerical simulation. Izv. Atmos. Ocean. Phys. 48, 373–383 (2012). https://doi.org/10.1134/S0001433812040093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433812040093

Keywords

Navigation