Skip to main content
Log in

Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin (Review)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

New information about the chemical composition of the stratosphere and mesosphere is reviewed. This information was obtained in different seasons in both hemispheres with the use of the MIPAS (IR limb sounder), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY; UV-visible and near-IR nadir and limb viewer), and Global Ozone Mapping Spectrometer (GOMOS) instruments installed on the European Envisat satellite launched in 2002. Measurements with the MIPAS instrument make it possible to retrieve information about the composition of the nighttime atmosphere. It should be noted that several powerful solar proton events (SPEs) occurred on the Sun in the period of satellite measurements. As is well known, the ionization of the polar atmosphere by SPEs is responsible for the intense interaction between ionic and neutral constituents below 100 km, which leads to the additional formation of nitrogen oxides and OH radicals destroying the ozone. Therefore, observations of the composition of the middle atmosphere in these periods are of great interest, because such situations serve as a unique test which makes it possible to check our knowledge not only about photochemical processes in the atmosphere but also about its interaction with cosmic plasma. The results of a comparison of model calculations with newly obtained data on the chemical composition, including those for SPE periods, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Funke, M. López-Puertas, T. P. von Clarman, et al., “Retrieval of Stratospheric NOx from 5.3 and 6.2 μM Nonlocal Thermodynamic Equilibrium Emissions Measured by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat,” J. Geophys. Res. 110, doi: 10.1029/2004JD005225, D09302 (2005).

  2. M. López-Puertas, B. Funke, T. von Clarman, et al., “The Variability of Stratospheric and Mesospheric NOy in the Arctic and Antarctic 2002–2004 Polar Winters,” Space Sci. Rev. 125, doi: 10.1007/s11214-006-9073-2, 403–416 (2006).

    Article  Google Scholar 

  3. C. E. Randall, V. L. Harvey, G. L. Manney, et al., “Stratospheric Effects of Energetic Particle Precipitation in 2003-2004,” Geophys. Rev. Lett. 32, doi: 10.1029/2004GL022003, L05802 (2005).

    Article  Google Scholar 

  4. C. P. Rinsland, Ch. Boone, R. Nassar, et al., “Atmospheric Chemistry Experiment (ACE) Arctic Stratospheric Measurements of NOx during February and March 2004: Impact of Intense Solar Flares,” Geophys. Rev. Lett. 32, doi: 10.1029/2005GL022425, L16S05 (2005).

    Article  Google Scholar 

  5. G. P. Stiller, TsiduG. Mengistu, T. von Clarmann, et al., “An Enhanced HNO3 Second Maximum in the Antarctic Mid-Winter Upper Stratosphere 2003,” J. Geophys. Res. 110, doi: 10.1029/2005JD006011, D20303 (2005).

    Article  Google Scholar 

  6. B. Funke, M. López-Puertas, S. Gil-López, et al., “Downward Transport of Upper Atmospheric NOx into the Polar Stratosphere during the Antarctic 2003 and Arctic 2002/2003 Winters,” J. Geophys. Res. 110, doi: 10.1029/2005JD006463, D2408 (2005).

    Google Scholar 

  7. A. Seppälä, P. T. Verronen, E. Kyrölä, et al., “Solar Proton Events of October–November 2003: Ozone Depletion in the Northern Hemisphere Polar Winter as Seen by GOMOS/Envisat,” Geophys. Rev. Lett. 31, doi: 10.1029/2004GL021042L19107, L19107 (2004).

    Article  Google Scholar 

  8. P. T. Verronen, A. Seppälä, M. A. Clilverd, et al., “Diurnal Variation of Ozone Depletion during the October–November 2003 Solar Proton Events,” J. Geophys. Res. 110, doi: 10.1029/2004JA010932, A09S32 (2005).

    Article  Google Scholar 

  9. M. Natarajan, E. E. Remsberg, L. E. Deaver, and J. M. Russell, “Anomalously High Levels of NOx in the Polar Upper Stratosphere during April 2004: Photo-chemical Consistency of HALOE Observation,” Geophys. Rev. Lett. 31, doi: 10.1029/2004GL020566, L15113 (2004).

    Article  Google Scholar 

  10. P. F. Bernath, C. T. McElroy, M. C. Abrams, et al., “Atmospheric Chemistry Experiment (ACE): Mission Overview,” Geophys. Rev. Lett. 32, doi: 10.1039/2005GL022383, L15S01 (2005).

    Article  Google Scholar 

  11. C. E. Randall, V. L. Harvey, C. S. Singlton, et al., “Energetic Particle Precipitation Effects on the Southern Hemisphere Stratosphere in 1992–2005,” J. Geophys. Res. 112, doi: 10. 1029/2006 JD007696, D08308 (2007).

    Article  Google Scholar 

  12. M. A. Clilverd, A. Seppälä, C. J. Rodger, et al., “Temporal Variability of the Descent of High-Altitude NOx Inferred from Ionospheric Data,” J. Geophys. Res. 112, doi: 10.1029/2006 JA012085, A09307 (2007).

    Article  Google Scholar 

  13. J. Urban, M. Pommier, D. P. Murtagh, et al., “Nitric Acid in the Stratosphere Based on Odin Observations from 2001 to 2007: I. A Global Climatology,” Atmos. Chem. Phys. Discuss. 8, 9569–9590 (2008).

    Article  Google Scholar 

  14. Y. J. Orsolini, J. Urban, and D. P. Murtagh, “Nitric Acid in the Stratosphere Based on Odin Observations from 2001 to 2007: II. High-Altitude Polar Enhancements,” Atmos. Chem. Phys. Discuss. 8, 9591–9605 (2008).

    Article  Google Scholar 

  15. R. L. De Zafra and S. P. Smyslyaev, “On the Formation of HNO3 in the Antarctic Mid to Upper Stratosphere in Winter,” J. Geophys. Res. 106(D19), 23115–23126 (2001).

    Article  Google Scholar 

  16. B. Funke, M. López-Puertas, M. Garcia-Comas, et al., “Mesospheric N2O Enhancements as Observed by MIPAS on Envisat during the Polar Winters in 2002–2004,” Atmos. Chem. Phys. Discuss. 8, 10561–10596 (2008).

    Article  Google Scholar 

  17. K. Semeniuk, J. C. McConnell, J. J. Jin, et al., “N2O Production by High Energy Auroral Electron Precipitation,” J. Geophys. Res. 113(D16), D16302.1–D16302.10 (2008).

    Article  Google Scholar 

  18. V. I. Fomichev, W. E. Ward, S. R. Beagley, et al., “Extended Canadian Middle Atmosphere Model: Zonal-Mean Climatology and Physical Parametrizations,” J. Geophys. Res. 107(D10), doi: 10.1029/2001JD000479 (2002).

  19. A. A. Krivolutsky, A. V. Klyuchnikova, G. R. Zakharov, et al., “Dynamical Response of the Middle Atmosphere to Solar Proton Event of July 2000: Three-Dimensional Model Simulations,” Adv. Space Res. 37(8), 1602–1613 (2006).

    Article  Google Scholar 

  20. D. A. Degenstein, N. D. Lloyd, A. E. Bourassa, et al., “Observations of Mesospheric Ozone Depletion during the October 28, 2003 Solar Proton Event by OSIRIS,” Geophys. Rev. Lett. 32, doi: 10.1029/2004GL021521, L03S11 (2005).

    Article  Google Scholar 

  21. D. Marsh, A. Smith, G. Brasseur, et al., “The Existence of a Tertiary Ozone Maximum in the High Latitude Middle Mesosphere,” Geophys. Rev. Lett. 28, 4531–4534 (2001).

    Article  Google Scholar 

  22. T. von Clarmann, N. Glatthor, M. Hopfner, et al., “Experimental Evidence of Perturbed Odd Hydrogen and Chlorine Chemistry After the October 2003 Solar Proton Events,” J. Geophys. Res. 110, doi: 10.1029/2005JA011053, A09S45 (2005).

    Article  Google Scholar 

  23. M. López-Puertas, B. Funke, S. Gil-López, et al., “Observation of NOx Enhancement and Ozone Depletion in the Northern and Southern Hemispheres after October–November 2003 Solar Proton Events,” J. Geophys. Res. 110, doi: 10.1029/2005JA011050, A09S43 (2005).

    Article  Google Scholar 

  24. M. López-Puertas, B. Funke, S. Gil-López, et al., “HNO3, N2O5, and ClONO2 Enhancements after the October–November 2003 Solar Proton Events,” J. Geophys. Res. 110, doi: 10.1029/2005JA011051, A09S44 (2005).

    Article  Google Scholar 

  25. Y. J. Orsolini, G. L. Manney, M. L. Santee, and C. E. Randall, “An Upper Stratospheric Layer of Enhanced HNO3 Following Exceptional Solar Storm,” Geophys. Rev. Lett. 32, doi: 10.1029/2004GL021588, L12S01 (2005).

    Article  Google Scholar 

  26. G. Rohen, C. Savigny, M. Sinnhuber, et al., “Ozone Depletion during the Solar Proton Events of October/November 2003 as Seen by SCIAMACHY,” J. Geophys. Res. 110, doi: 10.1029/2004JA010984, A09S39 (2005).

    Article  Google Scholar 

  27. C. H. Jackman, M. T. De Land, G. J. Labow, et al., “Neutral Atmospheric Influences of the Solar Proton Events in October–November 2003,” J. Geophys. Res. 110, doi: 10.1029/2004JA010888, A09S27 (2005).

    Article  Google Scholar 

  28. K. Semeniuk, J. C. McConnell, and C. H. Jackman, “Simulation of the October–November 2003 Solar Proton Events in the CMAM GCM: Comparison with Observations,” Geophys. Rev. Lett. 32, doi: 10.1029/2005GL022392, L15S02 (2005).

    Article  Google Scholar 

  29. G. L. Manning, K. Krüger, J. C. Sabutis, et al., “The Remarkable 2003–2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere since Late 1990s,” J. Geophys. Res. 110, doi: 10.1029/2004JD005367, D04107 (2005).

    Article  Google Scholar 

  30. A. Seppälä, M. A. Clilverd, and C. J. Rodger, “NOx Enhancements in the Middle Atmosphere During 2003–2004 Polar Winter: Relative Significance of Solar Proton Events and the Aurora as a Source,” J. Geophys. Res 112, doi: 10.1029/2006JD008326, D23303 (2007).

    Article  Google Scholar 

  31. A. A. Krivolutskii, A. A. Kuminov, T. Yu. V’yushkova, et al., “Changes in the Ozonosphere of the Earth Induced by Ionization of High-Latitude Atmosphere by Solar Protons in October 2003,” Kosm. Issl. 42(6), 653–662 (2004).

    Google Scholar 

  32. M. I. Panasyuk, S. N. Kuznetsov, L. L. Lazutin, et al., “Magnetic Storms in October 2003. Collaboration Extreme Solar Events of 2003 (ESE-2003),” Kosm. Issl. 42(5), 509–554 (2004).

    Google Scholar 

  33. A. Osepian, S. Kirkwood, and P. Dalin, “The Influence of Ozone Concentration on the Lower Ionosphere—Modeling and Measurements during the 29–30 October 2003 Solar Proton Event,” Ann. Geophys. 27(2), 577–589 (2009).

    Article  Google Scholar 

  34. C. H. Jackman, R. G. Roble, and E. L. Fleming, “Mesospheric Dynamical Changes Induced by the Solar Proton Events in October–November 2003,” Geophys. Rev. Lett. 34, doi: 10.1020/2006GL028328, L04812 (2007).

    Article  Google Scholar 

  35. Yu. E. Ozolin, I. L. Karol’, E. V. Rozanov, et al., “A Model of the Impact of Solar Proton Events on the Ionic and Gaseous Composition of the Mesosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45(6), 789–802 (2009) [Izv., Atmos. Ocean. Phys. 45 (6) 737–750 (2009)].

    Google Scholar 

  36. P. T. Verronen, A. Seppälä, E. Kyrölä, et al., “Production of Odd Hydrogen in the Mesosphere during the January 2005 Solar Proton Event,” Geophys. Rev. Lett. 33, doi: 10.1029/2006GL028115, L24811 (2006).

    Article  Google Scholar 

  37. A. Seppälä, P. T. Verronen, V. T. Sofieva, et al., “Destraction of the Tertiary Ozone Maximum during a Solar Proton Event,” Geophys. Rev. Lett. 33, doi: 10.1029/2005GL025571, L07804 (2006).

    Article  Google Scholar 

  38. C. Von Savigny, M. Sinnhuber, H. Bowensmann, et al., “On the Disappearance of Noctilucent Clouds during the January 2005 Solar Proton Events,” Geophys. Rev. Lett. 34, doi: 10.1029/2006GL028106, L02805 (2007).

    Article  Google Scholar 

  39. A. Seppälä, M. A. Clilverd, C. J. Rodger, et al., “The Effects of Hard-Spectra Proton Events on the Middle Atmosphere,” J. Geophys. Res. 113, doi: 10.1029/2008JA013517, A11311 (2008).

    Article  Google Scholar 

  40. E. Becker and C. von Savigny, “Dynamical Heating of the Polar Summer Mesopause Induced by Solar Proton Events,” J. Geophys. Res., 2010 (in press).

  41. R. C. Carrington, “Description of Singular Appearance Seen in the Sun on September 1, 1859,” Monthly Not. R. Astron. Soc. 20, 13–15 (1860).

    Google Scholar 

  42. C. J. Rodger, P. T. Verronen, M. A. Clilverd, et al., “Atmospheric Impact of the Carrington Event Solar Protons,” J. Geophys. Res. 113, doi: 10.1029/2008JD010702, D23302 (2008).

    Article  Google Scholar 

  43. S. Odenwald, J. Green, and W. Taylor, “Forecasting the Impact of an 1859-Calibre Superstorm on Satellite Resources,” Adv. Space Res. 38(2), 280–297 (2006).

    Article  Google Scholar 

  44. L. W. Townsend, E. N. Zapp, D. L. Stephens, et al., “Carrington Flare of 1859 as a Prototypical Worst-Case Solar Energetic Particle Event,” IEEE trans. Nucl. Sci. 50(6), 2307–2309 (2003).

    Article  Google Scholar 

  45. B. C. Thomas, C. H. Jacman, and A. L. Melott, “Modeling Atmospheric Effects of the September 1859 Solar Flare,” Geophys. Rev. Lett., doi: 10.1029/2006GL029174, L06810 (2007).

  46. A. Ondrášková, A. Krivolutsky, A. Kukoleva, et al., “Response of the Lower Ionosphere to Solar Proton Event on July 14, 2000. Model Simulations over the Both Poles,” J. Atmos. Sol.-Terr. Phys. 70, 539–545 (2008).

    Article  Google Scholar 

  47. A. Ondrášková, “A Numerical Model of Ion Concentration Profiles in the Lower Ionosphere,” Studia Geoph. Geod. 37, 189–208 (1993).

    Article  Google Scholar 

  48. G. Bras’e and S. Solomon, Middle Atmosphere Aeronomy (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  49. J. C. Foster and W. Rideout, “Midlatitude TEC Enhancements during the October 2003 Superstorm,” Geophys. Rev. Lett. 32, doi: 10.1029/2004GL021719, L12S04 (2005).

    Article  Google Scholar 

  50. C. H. Jackman, M. T. De Land, G. J. Labow, et al., “The Influence of the Several Very Large Solar Proton Events in Years 2000–2003 on the Neutral Middle Atmosphere,” Adv. Space Res. 35, 445–450 (2005b).

    Article  Google Scholar 

  51. C. H. Jackman, D. R. Marsch, F. M. Vitt, et al., “Short-and Medium-Term Atmospheric Effects of Very Large Solar Proton Events,” Atmos. Chem. Phys. Discuss. 7, 10543–10588 (2007b).

    Article  Google Scholar 

  52. S. Solomon, D. W. Rusch, J.-C. Gérard, et al., “The Effect of Particle Precipitation Events on the Neutral and Ion Chemistry of the Middle Atmosphere. II. Odd Hydrogen,” Planet. Space Sci. 29(8), 885–892 (1981).

    Article  Google Scholar 

  53. C. H. Jackman, D. R. Marsh, F. M. Vitt, et al., “Long-Term Middle Atmospheric Influence of Very Large Solar Proton Events,” J. Geophys. Res. 114, doi: 10.1029/2008JD011415, D11304 (2009).

    Article  Google Scholar 

  54. A. Krivolutsky, A. Kuminov, T. Vyushkova, et al., “Proton Activity of the Sun during 23rd Solar Maximum and Its Response in Ozonosphere of the Earth,” Adv. Space Res. 31(9), 2151–2156 (2003).

    Article  Google Scholar 

  55. A. Krivolutsky, A. Kuminov, and T. Vyushkova, “Ionization of the Atmosphere Caused by Solar Protons and Its Influence on the Ozonosphere of the Earth during 1994–2003,” J. Atmos. Sol.-Terr. Phys. 67, 105–117 (2005).

    Article  Google Scholar 

  56. A. A. Krivolutsky, A. A. Kuminov, A. A. Kukoleva, et al., “Solar Proton Activity during Cycle 23 and Changes in the Ozonosphere: Numerical Simulation and Analysis of Observational Data,” Geomagn. Aeron. 48(4), 450–464 (2008) [Geomagn. Aeron. 48 (4), 432–445 (2008)].

    Article  Google Scholar 

  57. N. K. Pereyaslova and M. N. Nazarova, “Main Characteristics of Proton Activity of Solar Proton Events in Cycle 23 of Solar Activity,” Izv. Akad. Nauk, Ser. Fiz. 67(4), 470–472 (2003).

    Google Scholar 

  58. N. K. Pereyaslova, M. N. Nazarova, and I. E. Petrenko, “Characteristics of Proton Activity in Solar Cycles 19–23,” Geomagn. Aeron. 45(3), 329–335 (2005) [Geomagn. Aeron. 45 (3), 308–314 (2005)].

    Google Scholar 

  59. F. M. Vitt and C. H. Jackman, “A Comparison of Source of Odd Nitrogen Production from 1974 through 1993 in the Earth’s Middle Atmosphere as Calculated using a Two-Dimensional Model,” J. Geophys. Res. 101(D3), 6729–6739 (1996).

    Article  Google Scholar 

  60. A. A. Krivolutskii, A. A. Kuminov, A. I. Repnev, et al., “Simulation of the Ozonosphere Response to the November 1997 Solar Proton Event,” Geomagn. Aeron. 41(2), 243–252 (2001) [Geomagn. Aeron. 41 (2), 230–234 (2001)].

    Google Scholar 

  61. A. Krivolutsky, G. Bazilevskaya, T. Vyushkova, et al., “Influence of Cosmic Rays on Chemical Composition of Atmosphere: Data Analysis and Photochemical Modeling,” Phys. Chem. Earth 27, 471–476 (2002).

    Google Scholar 

  62. M. G. Heaps, “The Effect of Solar Proton Event on the Minor Neutral Constituents of the Summer Polar Mesosphere,” U.S. Army Atmospheric Sci. Lab. Report. ASL-TR-0012 (1978).

  63. J. Fritzenwallner, “Globales Model zur Verteilung der Positiven und Negativen Ionen in der Unteren Iono-sphären der Erde,” Ph.D. Thesis (Switzerland, University of Bern, 1997).

    Google Scholar 

  64. W. Rusch, J.-C. Gérard, S. Solomon, et al., “The Effect of Particle Precipitation Events on the Neutral and Ion Chemistry of the Middle Atmosphere −1. Odd Nitrogen,” Planet. Space Sci. 29(7), 767–774 (1981).

    Article  Google Scholar 

  65. H. S. Porter, C. H. Jackman, and A. E. S. Green, “Efficiencies for Production of Atomic Nitrogen and Oxygen by Relativistic Proton Impact in Air,” J. Chem. Phys. 65(1), 154–167 (1976).

    Article  Google Scholar 

  66. G. P. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Springer, Dordrecht, 2005).

    Google Scholar 

  67. P. Warnek, “Cosmic Radiation as a Source of Odd Nitrogen in the Stratosphere,” J. Geophys. Res. 77(33), 6589–6591 (1972).

    Article  Google Scholar 

  68. M. Nicolet, “On the Production of Nitric Oxide by Cosmic Rays in the Mesosphere and Stratosphere,” Planet. Space Sci. 23, 637–649 (1975).

    Article  Google Scholar 

  69. P. Crutzen, I. S. A. Isaksen, and G. P. Reid, “Solar Proton Events: Stratospheric Source of Nitric Oxide,” Science 189(4201), 453–459 (1975).

    Article  Google Scholar 

  70. J. E. Frederick, “Solar Corpuscular Emission and Neutral Chemistry in the Earth’s Middle Atmosphere,” J. Geophys. Res. 81(19), 3179–3186 (1976).

    Article  Google Scholar 

  71. P. S. Vinogradov, I. K. Larin, A. I. Poroikova, et al., “On the Mechanism of Impact of Cosmic Rays on the Ozonosphere,” in Modern State of the Ozonosphere Research in the USSR. Transactions of the All-Union Conference on Ozone, Moscow, November, 1977 (Moscow, Gidrometeoizdat, 1980), pp. 123–130.

    Google Scholar 

  72. A. A. Krivolutsky and A. A. Repnev, Cosmic Influences on Ozonosphere of the Earth (GEOS, Moscow, 2009), 382 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Repnev.

Additional information

Original Russian Text © A.I. Repnev, A.A. Krivolutsky, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 5, pp. 579–607.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repnev, A.I., Krivolutsky, A.A. Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin (Review). Izv. Atmos. Ocean. Phys. 46, 535–562 (2010). https://doi.org/10.1134/S0001433810050014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810050014

Key words

Navigation