Skip to main content
Log in

Humidity of the tropical lower stratosphere: Observations and analysis

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of measurements of water-vapor vertical profiles in the upper troposphere and stratosphere on board a meteorological balloon with a FLASH-B optical fluorescent hygrometer (Russia) are presented. These data were obtained during two international field campaigns in West Africa (August 2006) and Central America (August 2007). Eleven high-resolution water-vapor vertical profiles measured in the course of these works make it possible to characterize the processes controlling humidity in the tropical tropopause region. Layers with increased humidity are detected in the lower stratosphere over West Africa to the level of the potential temperature 450 K. An analysis of satellite maps of the brightness temperature, balloon ozone measurements, and aerosol scattering, as well as trajectory modeling, display the relation between the observed layers with increased humidity and the phenomena of convective overshooting of the tropopause, as a result of which cold and ozone-depleted air penetrates into the lower stratosphere together with ice particles, which, rapidly sublimating, locally increase the water-vapor concentration. A comparison of the humidity data obtained in West Africa in 2006 and in Central America in 2007 reveals substantial distinctions in values and vertical structures of water vapor, both in the tropopause region and in the middle stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Brewer, “Evidence for a World Circulation Provided by the Measurements of Helium and Water Vapor Distribution in the Stratosphere,” Q.J.R. Meteorol. Soc., No. 75, 351–363 (1949).

  2. J. R. Holton, P. H. Haynes, M. E. McIntyre, et al., “Stratosphere-Troposphere Exchange,” Rev. Geophys., No. 33, 403–439 (1995).

  3. R. E. Newell and S. Gould-Stewart, “A Stratospheric Fountain?,” J. Atmos. Science, No. 38, 2789–2796 (1981).

    Google Scholar 

  4. G. Kent, E. Williams, P. H. Wang, et al., “Surface Temperature Related Variations in Tropical Cirrus Cloud as Measured by SAGE II,” J. Clim., No. 8, 2577–2594 (1995).

    Google Scholar 

  5. WMO, Scientific assessment of Ozone Depletion: 2006. Global Ozone Research and Monitoring project, Report No. 50 (Geneve, 2007).

  6. D. J. Seidel, R. J. Ross, J. K. Angell, et al., “Climatological Characteristics of the Tropical Tropopause As Revealed by Radionsondes,” J. Geophys. Res. 106(D8), 7857–7878 (2001).

    Article  Google Scholar 

  7. K. Rosenlof, S. Oltmans, D. Kley, et al., “Stratospheric Water Vapor Increases over the Past Half-Century,” Geophys. Rev. Lett. 7(28), 1195–1198 (2001).

    Article  Google Scholar 

  8. J.-P. Pommereau, A. Garnier, G. Held, et al., “An Overview of the HIBISCUS Campaign,” Atmos. Chem. Phys. Discuss, No. 7, 2389–2475 (2007).

    Google Scholar 

  9. J.-P. Chaboureau, J.-P. Cammas, J. Duron, et al., “A Numerical Study of Tropical Cross-Tropopause Transport by Convective Overshoots,” Atmos. Chem. Phys., No. 7, 1731–1740 (2007).

    Google Scholar 

  10. J. K. Nielsen, N. Larsen, F. Cairo, et al., “Solid Particles in the Tropical Lowest Stratosphere,” Atmos. Chem. Phys., No. 7, 685–695 (2007).

    Google Scholar 

  11. T. Corti, B. P. Luo, M. de Reus, et al., “Unprecedented Evidence for Overshooting Convection Hydrating the Tropical Stratosphere,” Geophys. Rev. Lett. 35, L10810 (2008).

    Article  Google Scholar 

  12. V. Yushkov, S. Merkulov, and V. Astakhov, “Optical Balloon Hygrometer for Upper Stratosphere and Stratosphere Water Vapour Measurements,” in Optical Remote Sensing of the Atmosphere and Clouds, Ed. by J. Wang, T. Ogawa, and Zh. Guans, Proc. SPIE. 3501, 439–445 (1998).

  13. V. Yushkov, et al., “Stratospheric Water Vapour Measurements in the Winter Arctic with Optical Fluorescent Hygrometer on Short and Long Duration Balloons,” in Proc. of the 15th ESA Symposium on European rocket and Balloon Programmes (2001), pp. 263–268.

  14. A. N. Terenin and H. G. Neiumin, “Photodissociation of Molecules in Schumann Ultraviolet,” Nature 134(3381), 255 (1934).

    Article  Google Scholar 

  15. J. L. Bertaux and A. Delannoy, “Premieres Measures Stratospheriques par un Hygrometre a Fluorescence Ultraviolette,” C.R. Acad. Sci. Paris, No. 286, 191–194 (1978).

  16. J. M. Rosen and N. T. Kjome, “Backscattersonde—A New Instrument for Atmospheric Aerosol Research,” Appl. Opt., No. 30, 1552–1561 (1991).

  17. H. Vömel, D. E. David, and K. Smith, “Accuracy of Tropospheric and Stratospheric Water Vapor Measurements by the Cryogenic Frost Point Hygrometer: Instrumental Details and Observations,” J. Geophys. Res. 112 D08305, doi: 10.1029/2006JD007224 (2007).

    Article  Google Scholar 

  18. C. Liu and E. J. Zipser, “Global Distribution of Convection Penetrating the Tropical Tropopause,” J. Geophys. Res. 110 D23104, doi: 10.1029/2005JD006063 (2005).

    Article  Google Scholar 

  19. F. H. Santos, S. Dos, C. Schiller, P. Konopka, et al., “Water and Relative Humidity in the TTL,” Geophys. Res. Abstr 9, 02292 (2007).

    Google Scholar 

  20. P. W. Mote, K. H. Rosenlof, M. E. Mclntyre, et al., “An Atmospheric Tape Recorder: The Imprint of Tropical Tropopause Temperatures on Stratospheric Water Vapor,” J. Geophys. Res. 101(D2), 3989–4006 (1996).

    Article  Google Scholar 

  21. A. N. Luk’yanov, V. A. Yushkov, Kh. Nakane, and Kh. Akioshi, “Trajectory Photochemical Model for the Lower Stratosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 36(6), 823–830 (2000) [Izv., Atmos. Ocean. Phys. 36 (6), 755–762 (2000)].

    Google Scholar 

  22. J. Schmetz, S. A. Tjemkes, M. Gube, et al., “Monitoring Deep Convection and Convective Overshooting with METEOSAT,” Adv. Space Res., 433–441 (1997).

  23. B. Vonnegut and C. B. Moorec, “Giant Electrical Storms” in Recent Advances in Atmospheric Electricity (Pergamon Press, London, 1958), pp. 399–411.

    Google Scholar 

  24. D. P. Grosvenor, T. W. Choularton, H. Coe, et al., “A Study of the Effect of Overshooting Deep Convection on the Water Content of the TTL and Lower Stratosphere from Cloud Resolving Model Simulations,” Atmos. Chem. Phys., No. 7, 4977–5002 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Khaykin.

Additional information

Original Russian Text © S.M. Khaykin, V.A. Yushkov, L.I. Korshunov, A.N. Luk’yanov, J.-P. Pommereau@b, J. Nielsen, H. Vömel, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 1, pp. 85–94.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaykin, S.M., Yushkov, V.A., Korshunov, L.I. et al. Humidity of the tropical lower stratosphere: Observations and analysis. Izv. Atmos. Ocean. Phys. 46, 76–84 (2010). https://doi.org/10.1134/S0001433810010111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810010111

Keywords

Navigation